已知橢圓的離心率 e=-, 則m的值為
A.3 B.或3 C. D.或
B
分析:橢圓的離心率e=,題中不能確定與中哪個(gè)是a,哪個(gè)是b,故應(yīng)將與比,分類討論。
解:據(jù)題意m>0且m≠5
⑴當(dāng)m>5時(shí),a2=m, b2=5,∴c2=a2-b2=m-5,∴c2/a2=(m-5)/m, 又e=
∴m=
⑵當(dāng)<m<5時(shí),a2=5, b2=m, ∴c2=5-m, ∴(5-m)/5=2/5 ∴m=3
由⑴⑵知 m=25/3或m=3 故選B
在運(yùn)用分類討論思想解決含參數(shù)字母的問題時(shí),要克服動(dòng)輒加以分類討論的思維定勢,應(yīng)充分挖掘問題的特征,多角度審視參數(shù),變更或變換命題,簡化分類討論,甚至避免分類討論。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在直角坐標(biāo)系中,已知橢圓的離心率e=,左右兩個(gè)焦分別為.過右焦點(diǎn)且與軸垂直的
直線與橢圓相交M、N兩點(diǎn),且|MN|=1.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設(shè)橢圓的左頂點(diǎn)為A,下頂點(diǎn)為B,動(dòng)點(diǎn)P滿足,
()試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對稱點(diǎn)落在橢圓上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在直角坐標(biāo)系中,已知橢圓的離心率e=,左右兩個(gè)焦分別為.過右焦點(diǎn)且與軸垂直的
直線與橢圓相交M、N兩點(diǎn),且|MN|=1.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設(shè)橢圓的左頂點(diǎn)為A,下頂點(diǎn)為B,動(dòng)點(diǎn)P滿足,
()試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對稱點(diǎn)落在橢圓上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:0107 期中題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年重慶一中高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com