20.若A,B,C,D四點共線,且滿足$\overrightarrow{AB}$=(3a,2a)(a≠0),$\overrightarrow{CD}$=(2,t),則t=( 。
A.$\frac{3}{4}$B.$\frac{4}{3}$C.3D.-3

分析 根據(jù)A,B,C,D四點共線,得出$\overrightarrow{AB}$、$\overrightarrow{CD}$共線,利用共線定理列出方程求出t的值.

解答 解:∵A,B,C,D四點共線,且$\overrightarrow{AB}$=(3a,2a)(a≠0),$\overrightarrow{CD}$=(2,t),
∴$\overrightarrow{AB}$∥$\overrightarrow{CD}$,
∴3a•t-2•2a=0,
解得t=$\frac{4}{3}$.
故選:B.

點評 本題考查了平面向量的坐標(biāo)表示與共線定理的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知x>1,y>1,且lnx,$\frac{1}{2}$,lny成等比數(shù)列,則xy的最小值為e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)z=$\frac{2i}{1+i}$(i是虛數(shù)單位),則z的模是( 。
A.iB.1C.$\sqrt{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)是一次函數(shù),它的圖象過點(3,5),又f(2),f(5),15成等差數(shù)列.若數(shù)列{an}滿足an=f(n)(n∈N,n>0).
(I)設(shè)數(shù)列{an}的前n項的和為Sn,求S2016
(Ⅱ)設(shè)數(shù)列{bn}滿足bn=an•${2^{\frac{{{a_n}+1}}{2}}}$,求數(shù)列{bn}的前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=tan(ωx+$\frac{π}{4}$)(ω>0)的最小正周期為$\frac{π}{2}$.
(Ⅰ)求ω的值及函數(shù)f(x)的定義域;
(Ⅱ)若f($\frac{α}{2}$)=3,求tan2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.lg[lg(lgx)]=0,則${x}^{-\frac{1}{5}}$=$\frac{1}{100}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.編輯一個計算機自動執(zhí)行程序:1Φ1=2,mΦn=k,(m+1)Φn=k-1,mΦ(n+1)=k+2,則2011Φ2011的輸出結(jié)果為( 。
A.2009B.2010C.2011D.2012

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知向量$\overrightarrow{a}$,$\overrightarrow$,其中|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,且($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow{a}$,則|2$\overrightarrow{a}$-$\overrightarrow$|=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是( 。
A.61B.62C.63D.64

查看答案和解析>>

同步練習(xí)冊答案