【題目】我們知道,目前最常見的骰子是六面骰,它是一顆正立方體,上面分別有一到六個洞(或數(shù)字),其相對兩面之數(shù)字和必為七.顯然,擲一次六面骰,只能產(chǎn)生六個數(shù)之一(正上面).現(xiàn)欲要求你設(shè)計一個十進制骰,使其擲一次能產(chǎn)生0~9這十個數(shù)之一,而且每個數(shù)字產(chǎn)生的可能性一樣.請問:你能設(shè)計出這樣的骰子嗎?若能,請寫出你的設(shè)計方案;若不能,寫出理由.

【答案】能,方案見解析

【解析】

因為不存在正十面體,所以直接產(chǎn)生十進制骰是辦不到的.

但要實現(xiàn)十進制骰的要求,這樣的骰子也是能設(shè)計的.

即把骰子做成正二十面體,使其相對兩面標同一個數(shù)字,這樣0~9這十個數(shù)字就均勻分布在骰子上,當擲一次骰子時,最上面出現(xiàn)的數(shù)字必然是0~9這十個數(shù)字之一,

顯然,每個數(shù)字出現(xiàn)的可能性一樣故個位骰即為二十面骰”.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,的頂點,,且、成等差數(shù)列.

1)求的頂點的軌跡方程;

2)直線與頂點的軌跡交于兩點,當線段的中點落在直線上時,試問:線段的垂直平分線是否恒過定點?若過定點,求出定點的坐標;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為,曲線C的極坐標方程為

(Ⅰ)求直線l和曲線C的直角坐標方程;

(Ⅱ)點M為曲線C上一點,求M到直線l的最小距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:若一個函數(shù)存在極大值,且該極大值為負數(shù),則稱這個函數(shù)為“函數(shù)”.

1)判斷函數(shù)是否為“函數(shù)”,并說明理由;

2)若函數(shù)是“函數(shù)”,求實數(shù)的取值范圍;

3)已知,,、,求證:當,且時,函數(shù)是“函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)求曲線處的切線方程;

2)對任意,恒成立,求實數(shù)的取值范圍;

3)當時,試求方程的根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù),曲線在點處的切線斜率為.

1)證明:有且只有一個零點.

2)當時,恒成立,求整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若恒成立,求a的值;

2)在(1)的條件下,若,證明:

3)若,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,,,.

1)證明:平面;

2)若的中點,,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若雙曲線的實軸長為6,焦距為10,右焦點為,則下列結(jié)論正確的是(

A.的漸近線上的點到距離的最小值為4B.的離心率為

C.上的點到距離的最小值為2D.的最短的弦長為

查看答案和解析>>

同步練習冊答案