【題目】已知函數(shù),.
(1)求曲線在處的切線方程;
(2)對(duì)任意,恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),試求方程的根的個(gè)數(shù).
【答案】(1);(2);(3)當(dāng)時(shí),根的個(gè)數(shù)為0;當(dāng)時(shí),根的個(gè)數(shù)為1;當(dāng)時(shí),根的個(gè)數(shù)為2
【解析】
(1)直接求導(dǎo)得,利用導(dǎo)數(shù)的幾何意義即可求出在處的切線方程;
(2)對(duì)任意,恒成立,轉(zhuǎn)化為對(duì)任意,恒成立,構(gòu)造函數(shù),,分類討論和的情況,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值和解決恒成立問(wèn)題,即可求出實(shí)數(shù)的取值范圍;
(3)分類討論的取值范圍,由(2)得,當(dāng)時(shí),方程的根的個(gè)數(shù)為0,當(dāng)時(shí),當(dāng)時(shí),,得方程的根的個(gè)數(shù)為1;當(dāng)時(shí),根據(jù)零點(diǎn)存在性定理,即可判斷出方程的根的個(gè)數(shù),綜合即可得出結(jié)論.
解:(1)∵,則的定義域?yàn)?/span>,
∴,∴,
∵,則切點(diǎn)為,
∴曲線在處的切線方程是:,
(2)∵對(duì)任意,恒成立,
∴對(duì)任意,恒成立,
即恒成立,
令,,
則,
①當(dāng)時(shí),當(dāng)時(shí),,∴在上單調(diào)遞減,
∴,
∴,
②當(dāng)時(shí),當(dāng)時(shí),,∴在上單調(diào)遞減,
當(dāng)時(shí),,∴在單調(diào)遞增,
∴,
∴,
綜上,實(shí)數(shù)的取值范圍是.
(3)當(dāng)時(shí),由(2)得,方程的根的個(gè)數(shù)為0,
當(dāng)時(shí),由(2)得,當(dāng)時(shí),,
∴方程的根的個(gè)數(shù)為1,
當(dāng)時(shí),,,
,
根據(jù)零點(diǎn)存在性定理,在上至少存在1個(gè)零點(diǎn),
又在上單調(diào)遞減,
∴在在上只有1個(gè)零點(diǎn),
,同理,在上只有1個(gè)零點(diǎn),
∴方程的根的個(gè)數(shù)為2,
綜上,當(dāng)時(shí),方程的根的個(gè)數(shù)為0;
當(dāng) 時(shí),方程的根的個(gè)數(shù)為1;
當(dāng)時(shí),方程的根的個(gè)數(shù)為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列(任意項(xiàng)都不為零)的前項(xiàng)和為,首項(xiàng)為,對(duì)于任意,滿足.
(1)數(shù)列的通項(xiàng)公式;
(2)是否存在使得成等比數(shù)列,且成等差數(shù)列?若存在,試求的值;若不存在,請(qǐng)說(shuō)明理由;
(3)設(shè)數(shù)列,,若由的前項(xiàng)依次構(gòu)成的數(shù)列是單調(diào)遞增數(shù)列,求正整數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩個(gè)數(shù)列、,當(dāng)和同時(shí)在時(shí)取得相同的最大值,我們稱與具有性質(zhì),其中.
(1)設(shè)的二項(xiàng)展開式中的系數(shù)為(),,記,,,依次下去,,組成的數(shù)列是;同樣地,的二項(xiàng)展開式中的系數(shù)為(),,記,,,依次下去,,組成的數(shù)列是;判別與是否具有性質(zhì),請(qǐng)說(shuō)明理由;
(2)數(shù)列的前項(xiàng)和是,數(shù)列的前項(xiàng)和是,若與具有性質(zhì),,則這樣的數(shù)列一共有多少個(gè)?請(qǐng)說(shuō)明理由;
(3)兩個(gè)有限項(xiàng)數(shù)列與滿足,,且,是否存在實(shí)數(shù),使得與具有性質(zhì),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某省2020年高考將實(shí)施新的高考改革方案.考生的高考總成績(jī)由3門統(tǒng)一高考科目成績(jī)和自主選擇的3門普通高中學(xué)業(yè)水平等級(jí)考試科目成績(jī)組成,總分為750分.其中,統(tǒng)一高考科目為語(yǔ)文、數(shù)學(xué)、外語(yǔ),自主選擇的3門普通高中學(xué)業(yè)水平等級(jí)考試科目是從物理、化學(xué)、生物、政治、歷史、地理6科中選擇3門作為選考科目,語(yǔ)文、數(shù)學(xué)、外語(yǔ)三科各占150分,選考科目成績(jī)采用“賦分制”,即原始分?jǐn)?shù)不直接用,而是按照學(xué)生分?jǐn)?shù)在本科目考試的排名來(lái)劃分等級(jí)并以此打分得到最后得分.根據(jù)高考綜合改革方案,將每門等級(jí)考試科目中考生的原始成績(jī)從高到低分為,,,,,,,共8個(gè)等級(jí).參照正態(tài)分布原則,確定各等級(jí)人數(shù)所占比例分別為3%,7%,16%,24%,24%,16%,7%,3%.等級(jí)考試科目成績(jī)計(jì)入考生總成績(jī)時(shí),將至等級(jí)內(nèi)的考生原始成績(jī),依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到91~100,81~90,71~80,61~70,51~60,41~50,31~40,21~30八個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級(jí)成績(jī).舉例說(shuō)明:某同學(xué)化學(xué)學(xué)科原始分為65分,該學(xué)科等級(jí)的原始分分布區(qū)間為58~69,則該同學(xué)化學(xué)學(xué)科的原始成績(jī)屬等級(jí).而等級(jí)的轉(zhuǎn)換分區(qū)間為61~70,那么該同學(xué)化學(xué)學(xué)科的轉(zhuǎn)換分計(jì)算方法為:設(shè)該同學(xué)化學(xué)學(xué)科的轉(zhuǎn)換等級(jí)分為,,求得.四舍五入后該同學(xué)化學(xué)學(xué)科賦分成績(jī)?yōu)?/span>67.為給高一學(xué)生合理選科提供依據(jù),全省對(duì)六個(gè)選考科目進(jìn)行測(cè)試,某校高一年級(jí)2000人,根據(jù)該校高一學(xué)生的物理原始成績(jī)制成頻率分布直方圖(見(jiàn)右圖).由頻率分布直方圖,可以認(rèn)為該校高一學(xué)生的物理原始成績(jī)服從正態(tài)分布,用這2000名學(xué)生的平均物理成績(jī)作為的估計(jì)值,用這2000名學(xué)生的物理成績(jī)的方差作為的估計(jì)值.
(1)若張明同學(xué)在這次考試中的物理原始分為86分,等級(jí)為,其所在原始分分布區(qū)間為82~93,求張明轉(zhuǎn)換后的物理成績(jī)(精確到1);按高考改革方案,若從全省考生中隨機(jī)抽取100人,記表示這100人中等級(jí)成績(jī)?cè)趨^(qū)間內(nèi)的人數(shù),求最有可能的取值(概率最大);
(2)①求,(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)作代表);
②由①中的數(shù)據(jù),記該校高一學(xué)生的物理原始分高于84分的人數(shù)為,求.
附:若,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,平面平面,四邊形是邊長(zhǎng)為的正方形,是等腰直角三角形,且,平面,.
(1)求異面直線和所成角的余弦值;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,目前最常見(jiàn)的骰子是六面骰,它是一顆正立方體,上面分別有一到六個(gè)洞(或數(shù)字),其相對(duì)兩面之?dāng)?shù)字和必為七.顯然,擲一次六面骰,只能產(chǎn)生六個(gè)數(shù)之一(正上面).現(xiàn)欲要求你設(shè)計(jì)一個(gè)“十進(jìn)制骰”,使其擲一次能產(chǎn)生0~9這十個(gè)數(shù)之一,而且每個(gè)數(shù)字產(chǎn)生的可能性一樣.請(qǐng)問(wèn):你能設(shè)計(jì)出這樣的骰子嗎?若能,請(qǐng)寫出你的設(shè)計(jì)方案;若不能,寫出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司培訓(xùn)員工某項(xiàng)技能,培訓(xùn)有如下兩種方式:
方式一:周一到周五每天培訓(xùn)1小時(shí),周日測(cè)試
方式二:周六一天培訓(xùn)4小時(shí),周日測(cè)試
公司有多個(gè)班組,每個(gè)班組60人,現(xiàn)任選兩組記為甲組、乙組先培訓(xùn);甲組選方式一,乙組選方式二,并記錄每周培訓(xùn)后測(cè)試達(dá)標(biāo)的人數(shù)如表:
第一周 | 第二周 | 第三周 | 第四周 | |
甲組 | 20 | 25 | 10 | 5 |
乙組 | 8 | 16 | 20 | 16 |
用方式一與方式二進(jìn)行培訓(xùn),分別估計(jì)員工受訓(xùn)的平均時(shí)間精確到,并據(jù)此判斷哪種培訓(xùn)方式效率更高?
在甲乙兩組中,從第三周培訓(xùn)后達(dá)標(biāo)的員工中采用分層抽樣的方法抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人,求這2人中至少有1人來(lái)自甲組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知實(shí)數(shù),設(shè)函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)對(duì)任意均有 求的取值范圍.
注:為自然對(duì)數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了貫徹落實(shí)黨中央對(duì)新冠肺炎疫情防控工作的部署和要求,堅(jiān)決防范疫情向校園蔓延,切實(shí)保障廣大師生身體健康和生命的安全,教育主管部門決定通過(guò)電視頻道、網(wǎng)絡(luò)平臺(tái)等多種方式實(shí)施線上教育教學(xué)工作.某教育機(jī)構(gòu)為了了解人們對(duì)其數(shù)學(xué)網(wǎng)課授課方式的滿意度,從經(jīng)濟(jì)不發(fā)達(dá)的A城市和經(jīng)濟(jì)發(fā)達(dá)的B城市分別隨機(jī)調(diào)查了20個(gè)用戶,得到了一個(gè)用戶滿意度評(píng)分的樣本,并繪制出莖葉圖如下:
若評(píng)分不低于80分,則認(rèn)為該用戶對(duì)此教育機(jī)構(gòu)授課方式“認(rèn)可”,否則認(rèn)為該用戶對(duì)此教育機(jī)構(gòu)授課方式“不認(rèn)可”.
(Ⅰ)請(qǐng)根據(jù)此樣本完成下列2×2列聯(lián)表,并據(jù)此列聯(lián)表分析,能否有95%的把握認(rèn)為城市經(jīng)濟(jì)狀況與該市的用戶認(rèn)可該教育機(jī)構(gòu)授課方式有關(guān)?
認(rèn)可 | 不認(rèn)可 | 合計(jì) | |
A城市 | |||
B城市 | |||
合計(jì) |
(Ⅱ)在樣本A,B兩個(gè)城市對(duì)此教育機(jī)構(gòu)授課方式“認(rèn)可”的用戶中按分層抽樣的方法抽取6人,若在此6人中任選2人參加數(shù)學(xué)競(jìng)賽,求A城市中至少有1人參加的概率.
參考公式:,其中.
參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | |
2.706 | 3.841 | 5.024 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com