【題目】已知橢圓的左焦點(diǎn)的離心率為的等比中項(xiàng).

(1)求曲線的方程;

(2)傾斜角為的直線過(guò)原點(diǎn)且與交于兩點(diǎn),傾斜角為的直線過(guò)且與交于兩點(diǎn),若,求的值.

【答案】(1);(2) .

【解析】試題分析:(1)根據(jù)條件的等比中項(xiàng),焦點(diǎn),聯(lián)立方程即可求出曲線的方程;(2)由題意,分兩種討論:1.當(dāng)傾斜角時(shí),求出的值;2. 當(dāng)傾斜角時(shí),設(shè)傾斜角為的直線的斜率,兩條直線分別表示出來(lái),再和曲線的方程聯(lián)立,利用韋達(dá)定理,求出的值.

試題解析:(1)由題可知,橢圓中,解得,所以橢圓的方程是;

(2)設(shè)傾斜角為的直線為,傾斜角為的直線,

①當(dāng)時(shí),由,知,則,

于是,此時(shí);

(2)當(dāng)時(shí),由,知,且這兩條直線的斜率互為相反數(shù),

設(shè),則,

,可得,

,

可得: ,

由于,

設(shè)與橢圓的兩個(gè)交點(diǎn)坐標(biāo)依次為,

于是

,綜上所述總有

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)平面直角坐標(biāo)系xOy中,曲線G:y= + x﹣a2(x∈R),a為常數(shù).
(1)若a≠0,曲線G的圖象與兩坐標(biāo)軸有三個(gè)交點(diǎn),求經(jīng)過(guò)這三個(gè)交點(diǎn)的圓C的一般方程;
(2)在(1)的條件下,求圓心C所在曲線的軌跡方程;
(3)若a=0,已知點(diǎn)M(0,3),在y軸上存在定點(diǎn)N(異于點(diǎn)M)滿足:對(duì)于圓C上任一點(diǎn)P,都有 為一常數(shù),試求所有滿足條件的點(diǎn)N的坐標(biāo)及該常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】各項(xiàng)均為正數(shù)的數(shù)列{an}中,a1=1,Sn是數(shù)列{an}的前n項(xiàng)和,對(duì)任意n∈N* , 有2Sn=2pan2+pan﹣p(p∈R)
(1)求常數(shù)p的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)記bn= ,求數(shù)列{bn}的前n項(xiàng)和T.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x+1)= ,則f(2x﹣1)的定義域?yàn)椋?/span>
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,已知

(1)求角C;(2)若c=2,求△ABC的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),直線l與y軸的交點(diǎn)為P.
(1)寫(xiě)出點(diǎn)P的極坐標(biāo)(ρ,θ)(其中ρ>0,0≤θ<2π);
(2)求曲線 上的點(diǎn)到P點(diǎn)距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系 中,以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系.已知曲線 (t為參數(shù)),曲線 ;
(1)將曲線 化成普通方程,將曲線 化成參數(shù)方程;
(2)判斷曲線 和曲線 的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合,若對(duì)于任意,存在,使得成立,則稱(chēng)集合是“好集合”.給出下列4個(gè)集合:①;②;③;④.其中為“好集合”的序號(hào)是( )

A. ①②④ B. ②③ C. ③④ D. ①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=kax(k,a為常數(shù),a>0且a≠1)的圖象過(guò)點(diǎn)A(0,1),B(3,8).
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)= 是奇函數(shù),求b的值;
(3)在(2)的條件下判斷函數(shù)g(x)在(0,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案