【題目】函數(shù)f(x)=kax(k,a為常數(shù),a>0且a≠1)的圖象過點(diǎn)A(0,1),B(3,8).
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)= 是奇函數(shù),求b的值;
(3)在(2)的條件下判斷函數(shù)g(x)在(0,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.

【答案】
(1)解:∵函數(shù)f(x)=kax(k,a為常數(shù),a>0且a≠1)的圖象過點(diǎn)A(0,1),B(3,8),

,解得 ,

,


(2)解:由(1)知 ,∵函數(shù) 為奇函數(shù),

∴g(﹣x)=﹣g(x)即 ,

∴b=1.


(3)解:由(2)知 ,∴g(x)在(0,+∞)為減函數(shù),

證明:任取x1,x2∈(0,+∞)且x1<x2,則 =

∵0<x1<x2,∴

,即g(x1)﹣g(x2)>0,∴g(x1)>g(x2

∴g(x)在(0,+∞)為減函數(shù)


【解析】(1)利用待定系數(shù)法求解析式即可;(2)利用奇函數(shù)的定義得到關(guān)于b的等式解之即可;(3)利用單調(diào)性的定義進(jìn)行判斷證明.
【考點(diǎn)精析】本題主要考查了函數(shù)的奇偶性的相關(guān)知識(shí)點(diǎn),需要掌握偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點(diǎn)的離心率為的等比中項(xiàng).

(1)求曲線的方程;

(2)傾斜角為的直線過原點(diǎn)且與交于兩點(diǎn),傾斜角為的直線過且與交于兩點(diǎn),若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在R上的奇函數(shù),且當(dāng)x<0時(shí),
(1)求f(x)的表達(dá)式;
(2)判斷并證明函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若,證明:對(duì)任意的實(shí)數(shù),都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知10件不同產(chǎn)品中共有4件次品,現(xiàn)對(duì)它們進(jìn)行一一測(cè)試,直至找到所有次品為止.
(1)若恰在第5次測(cè)試,才測(cè)試到第一件次品,第10次才找到最后一件次品的不同測(cè)試方法數(shù)有多少種?
(2)若恰在第5次測(cè)試后,就找出了所有次品,則這樣的不同測(cè)試方法數(shù)有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在實(shí)數(shù)集R上的函數(shù)f(x)滿足f(1)=2,且f(x)的導(dǎo)數(shù)f'(x)在R上恒有f'(x)<1(x∈R),則不等式f(x)>x+1的解集為(
A.(1,+∞)
B.(﹣∞,﹣1)∪(1,+∞)
C.(﹣1,1)
D.(﹣∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面上,點(diǎn)A、C為射線PM上的兩點(diǎn),點(diǎn)B、D為射線PN上兩點(diǎn),則有(其中S△PAB、S△PCD分別為△PAB、△PCD的面積);空間中,點(diǎn)A、C為射線PM上的兩點(diǎn),點(diǎn)B、D為射線PN上的兩點(diǎn),點(diǎn)E、F為射線PL上的兩點(diǎn),則有=___________.(其中VP-ABE、VP-CDF分別為四面體P-ABE、P-CDF的體積)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,其中.

(1)若,且曲線處的切線過原點(diǎn),求直線的方程;

(2)求的極值;

(3)若函數(shù)有兩個(gè)極值點(diǎn), ,證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) +cos2x+a(a∈R,a為常數(shù)). (Ⅰ)求函數(shù)的最小正周期;
(Ⅱ)求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅲ)若 時(shí),f(x)的最小值為﹣2,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案