已知函數(shù).
(1)若,求在處的切線方程;
(2)若在上是增函數(shù),求實數(shù)的取值范圍.
(1)故曲線在處的切線方程為;(2).
解析試題分析:(1)先將代入函數(shù)的解析式,并求出導(dǎo)數(shù),然后分別求出與的值,最后利用點斜式求出切線方程;(2)將“函數(shù)在上是增函數(shù)”這一條件轉(zhuǎn)化為“不等式在上恒成立”進行求解,結(jié)合參數(shù)分離法轉(zhuǎn)化為“不等式在上恒成立”型不等式進行處理,即等價于“”,最后利用導(dǎo)數(shù)求出函數(shù)在上的最小值,從而得到參數(shù)的取值范圍.
試題解析:(1)當時,,則,
,,
故曲線在處的切線方程為,即;
(2)在上是增函數(shù),則上恒成立,
,,
于是有不等式在上恒成立,即在上恒成立,
令,則,令,解得,列表如下:
故函數(shù)在處取得極小值,亦即最小值,即,所以,減 極小值 增
即實數(shù)
科目:高中數(shù)學 來源: 題型:解答題
已知向量,,,點A、B為函數(shù)的相鄰兩個零點,AB=π.
(1)求的值;
(2)若,,求的值;
(3)求在區(qū)間上的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=x-ax+(a-1),。
(1)討論函數(shù)的單調(diào)性;(2)若,設(shè),
(。┣笞Cg(x)為單調(diào)遞增函數(shù);
(ⅱ)求證對任意x,x,xx,有.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(Ⅰ)若試確定函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,且對于任意,恒成立,求實數(shù)的取值范圍;
(Ⅲ)令若至少存在一個實數(shù),使成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)若函數(shù)在處取得極值,且函數(shù)只有一個零點,求的取值范圍.
(2)若函數(shù)在區(qū)間上不是單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),(其中m為常數(shù)).
(1) 試討論在區(qū)間上的單調(diào)性;
(2) 令函數(shù).當時,曲線上總存在相異兩點、,使得過、點處的切線互相平行,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com