.橢圓+=1(a>b>0)上一點(diǎn)A關(guān)于原點(diǎn)的對稱點(diǎn)為BF為其右焦點(diǎn),若AFBF,設(shè)∠ABF=,且∈[,],則該橢圓離心率的取值范圍為

     A.[,1 )                        B.[,]

     C.[,1)                        D.[,]

 

【答案】

B

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•宿州一模)已知斜率為1的直線l與雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
相交于B、D兩點(diǎn),且BD的中點(diǎn)為M(1,3).
(1)求雙曲線C的離心率;
(2)若雙曲線C的右焦點(diǎn)坐標(biāo)為(3,0),則以雙曲線的焦點(diǎn)為焦點(diǎn),過直線g:x-y+9=0上一點(diǎn)M作橢圓,要使所作橢圓的長軸最短,點(diǎn)M應(yīng)在何處?并求出此時(shí)的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•虹口區(qū)三模)已知圓G:x2+y2-2x-
2
y=0
經(jīng)過橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點(diǎn)F及上頂點(diǎn)B.
(1)求橢圓的方程;
(2)過橢圓外一點(diǎn)M(m,0)(m>a)傾斜角為
5
6
π
的直線l交橢圓于C、D兩點(diǎn),若右焦點(diǎn)F在以線段CD為直徑的圓E的外部,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
3
,橢圓上的點(diǎn)到右焦點(diǎn)F的最近距離為2,若橢圓C與x軸交于A、B兩點(diǎn),M是橢圓C上異于A、B的任意一點(diǎn),直線MA交直線l:x=9于G點(diǎn),直線MB交直線l于H點(diǎn).
(1)求橢圓C的方程;
(2)試探求以GH為直徑的圓是否恒經(jīng)過x軸上的定點(diǎn)?若經(jīng)過,求出定點(diǎn)的坐標(biāo);若不經(jīng)過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓=1(a>b>0)的中心、右焦點(diǎn)、右頂點(diǎn)及右準(zhǔn)線與x軸的交點(diǎn)依次為O、F、G、H,則||的最大值為

A.                  B.                  C.                  D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓=1(a>b>0)的焦點(diǎn)分別為F1(-1,0)、F2(1,0),右準(zhǔn)線l交x軸于點(diǎn)A,且.

(1)試求橢圓的方程;

(2)過F1、F2分別作互相垂直的兩直線與橢圓分別交于D、E、M、N四點(diǎn)(如圖所示),試求四邊形DMEN面積的最大值和最小值.

(文)已知函數(shù)f(x)=x3+bx2+cx,b、c∈R,且函數(shù)f(x)在區(qū)間(-1,1)上單調(diào)遞增,在區(qū)間(1,3)上單調(diào)遞減.

(1)若b=-2,求c的值;

(2)求證:c≥3;

(3)設(shè)函數(shù)g(x)=f′(x),當(dāng)x∈[-1,3]時(shí),g(x)的最小值是-1,求b、c的值.

查看答案和解析>>

同步練習(xí)冊答案