如圖直角梯形OABC中,
,SO=1,以O(shè)C、OA、OS分別為x軸、y軸、z軸建立直角坐標(biāo)系O-xyz.
(Ⅰ)求
的余弦值;
(Ⅱ)設(shè)
①
②設(shè)OA與平面SBC所成的角為
,求
。
(Ⅰ)如圖所示:C(2,0,0),S(0,0,1),O(0,0,0),B(1,1,0),
………3分
………6分
(Ⅱ)①
…10分
②∵
,
為平面SBC的法向量,
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在長方體
中,點
分別在
上,且
,
.
(1)求證:
平面
;
(2)若規(guī)定兩個平面所成的角是這兩個平面所組成的二面角中的銳角(或直角),則在空間有定理:若兩條直線分別垂直于兩個平面,則這兩條直線所成的角與這兩個平面所成角相等,試根據(jù)上述定理,在
時,求平面
與平面
所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知空間直角坐標(biāo)系
中有一點
,點
是
平面內(nèi)的直線
上的動點,則
兩點的最短距離是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖
是一個水平放置的正三棱柱
,
是棱
的中點.正三棱柱的主視圖如圖
.
(Ⅰ) 圖
中垂直于平面
的平面有哪幾個?(直接寫出符合要求的平面即可,不必說明或證明)
(Ⅱ)求正三棱柱
的體積;
(Ⅲ)證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,四棱錐
的底面為矩形,
是四棱錐的高,
與
所成角為
,
是
的中點,
是
上的動點.
(Ⅰ)證明:
;
(Ⅱ)若
,求直線
與平面
所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(12分)如圖7-15,在正三棱柱ABC—A
1B
1C
1中,各棱長都等于a,D、E分別是AC
1、BB
1的中點,
(1)求證:DE是異面直線AC
1與BB
1的公垂線段,并求其長度;
(2)求二面角E—AC
1—C的大小;
(3)求點C
1到平面AEC的距離。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知幾何體E—ABCD如圖所示,其中四邊形ABCD為矩形,
為等邊三角形,且
點F為棱BE上的動點。
(I)若DE//平面AFC,試確定點F的位置;
(II)在(I)條件下,求二面角E—DC—F的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
一個幾何體是由圓柱
和三棱錐
組合而成,點
、
、
在圓
的圓周上,其正(主)視圖、側(cè)(左)視圖的面積分別為10和12,如圖3所示,其中
,
,
,
.
(1)求證:
;
(2)求二面角
的平面角的大。
查看答案和解析>>