【題目】函數(shù)

(1)討論的單調性;

(2)若函數(shù)有兩個極值點,且,求證:

【答案】(1) 時, 上單減,在上單增; 時, 上單減,在上單增; 時, 上單增;(2)見解析.

【解析】試題分析:(1) ,分類討論,研究的符號情況,進而得到函數(shù)的單調區(qū)間;(2) 設函數(shù)有兩個極值點,且 、的二根 ,若證成立,只需證恒成立.設,研究其最值即可.

試題解析:

解: 的定義域是,

(1)由題設知,

,這是開口向上,以為對稱軸的拋物線.

,即時, ,即上恒成立

②當,即時,由

,

1) 當,即時,

時, ,即, 時, ,即

2) 當時,即,即

時, ,即

時, ,即

綜上:

時, 上單減,在上單增;

時, 上單減,在上單增; 時, 上單增.

(2)若函數(shù)有兩個極值點,且

則必是,則,則,

上單減,在上單增,

的二根

,即,

若證成立,只需證

即證恒成立

時, , ,

,故上單增

恒成立

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知.

(1)若是函數(shù)的極值點,求的值;

(2)當時,若,都有成立,求實數(shù)

的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若平面區(qū)域 夾在兩條斜率為 的平行直線之間,則這兩平行直線間的距離的最小值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線 ,在以坐標原點為極點, 軸的正半軸為極軸的極坐標系中,曲線 .

(Ⅰ)寫出, 的直角坐標方程;

(Ⅱ)點 分別是曲線, 上的動點,且點軸的上側,點軸的左側, 與曲線相切,求當最小時,直線的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若a>b>1,0<c<1,則( )
A.ac<bc
B.abc<bac
C.ca<cb
D.logac<logbc

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】超市某種綠色食品,過去20個月該食品的月市場需求量(單位: , )即每月銷售的數(shù)據(jù)記錄如下:

137 108 114 121 115 135 122 140 128 139

125 140 130 125 105 115 133 124 149 115

對這20個數(shù)據(jù)按組距10進行分組,并統(tǒng)計整理,繪制了如下尚不完整的統(tǒng)計圖表:

(Ⅰ)寫出, 的值.若視分布在各區(qū)間內的頻率為相應的概率,試計算;

(Ⅱ)記組月市場需求量數(shù)據(jù)的平均數(shù)與方差分別為 , 組月市場需求量數(shù)據(jù)的平均數(shù)與方差分別為, ,試分別比較, 的大;(只需寫出結論)

(Ⅲ)為保證該綠色產(chǎn)品的質量,超市規(guī)定該產(chǎn)品僅在每月一日上架銷售,每月最后一日對所有未售出的產(chǎn)品進行下架處理.若超市每售出該綠色食品可獲利潤5元,未售出的食品每虧損3元,并且超市為下一個月采購了該綠色食品,求超市下一個月銷售該綠色食品的利潤的分布列及數(shù)學期望.(以分組的區(qū)間中點值代表該組的各個值,并以月市場需求量落入該區(qū)間的頻率作為月市場需求量取該組區(qū)間中點值的概率)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|x2﹣5x﹣6<0},集合B={x|6x2﹣5x+1≥0},集合C={x|(x﹣m)(x﹣m﹣9)<0}
(1)求A∩B;
(2)若AC,求實數(shù) m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面是正方形, 底面, ,點分別在棱上,且平面.

(1)求證: ;

(2)求直線與平面所成角的正弦值.

(3)求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,PA⊥平面ABC,AC⊥BC,D為側棱PC的中點,它的正(主)視圖和側(左)視圖如圖所示.

(Ⅰ)求三棱錐P﹣ABD的體積.
(Ⅱ)在∠ACB的平分線所在直線上確定一點Q,使得PQ∥平面ABD,并求此時PQ的長.

查看答案和解析>>

同步練習冊答案