【題目】某小學(xué)一班級(jí)1999級(jí)同學(xué)舉行20周年聚會(huì),該班共來(lái)了12位同學(xué),其中女同學(xué)6位,聚會(huì)過(guò)程中有一個(gè)游戲環(huán)節(jié),在游戲環(huán)節(jié)中,需要隨機(jī)從中選出2位同學(xué)代表,進(jìn)行男女搭配完成該項(xiàng)游戲,因此,每次選出的2位同學(xué)是一男一女,才算“有效選擇”;否則視為“無(wú)效選擇”,繼續(xù)下一次選擇,直到成為“有效選擇”為止.

1)求第一次隨機(jī)選出的2位同學(xué)是“有效選擇”的概率;

2)設(shè)第一次選出的2位同學(xué)代表中女同學(xué)人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

【答案】1;(2)分布列見(jiàn)解析,1.

【解析】

1)從12個(gè)人選2人的方法數(shù)為,再求出選取一男一女的方法數(shù)可計(jì)算概率;

2)隨機(jī)變量的所有可能取值分別為0,1,2,分別求出概率后得概率分布列,再由期望公式得期望.

1)設(shè)每次隨機(jī)選出的2位同學(xué)是“有效選擇”為事件

則由概率公式,得.

即每次隨機(jī)選出的2位同學(xué)是“有效選擇”的概率為.

2)易知隨機(jī)變量的所有可能取值分別為0,12.

表示選出的2位男同學(xué),沒(méi)有女同學(xué),則;

表示選出的1位男同學(xué),1位女同學(xué),則;

表示選出的2位女同學(xué),沒(méi)有男同學(xué),則.

故隨機(jī)變量的分布列為

0

1

2

故隨機(jī)變量的數(shù)學(xué)期望為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)是世界上嚴(yán)重缺水的歸家之一,某市為了制訂合理的節(jié)水方案,對(duì)家庭用水情況進(jìn)行了抽樣調(diào)查,獲得了某年100個(gè)家庭的月均用水量(單位:)的數(shù)據(jù),將這些數(shù)據(jù)按照,,,,,,,分成9組,制成了如圖所示的頻率分布直方圖.

1)求圖中的值,若該市有30萬(wàn)個(gè)家庭,試估計(jì)全市月均用水量不低于的家庭數(shù);

2)假設(shè)同組中的每個(gè)數(shù)據(jù)都用該組區(qū)間的中點(diǎn)值代替,試估計(jì)全市家庭月均用水量的平均數(shù);

3)現(xiàn)從月均用水量在,的家庭中,先按照分層抽樣的方法抽取9個(gè)家庭,再?gòu)倪@9家庭中抽取4個(gè)家庭,記這4個(gè)家庭中月均用水量在中的數(shù)量為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線,曲線為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系.

1)求的極坐標(biāo)方程;

2)射線的極坐標(biāo)方程為,若分別與交于異于極點(diǎn)的兩點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,極點(diǎn)為,一條封閉的曲線由四段曲線組成:,.

1)求該封閉曲線所圍成的圖形面積;

2)若直線與曲線恰有3個(gè)公共點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù),

1)設(shè)是函數(shù)的導(dǎo)函數(shù),求的單調(diào)區(qū)間;

2)證明:當(dāng)時(shí),在區(qū)間上有極大值點(diǎn),且

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且點(diǎn)在橢圓.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過(guò)點(diǎn)的直線與橢圓交于,兩點(diǎn),在直線上存在點(diǎn),使三角形為正三角形,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線的虛軸的一個(gè)頂點(diǎn)為,左頂點(diǎn)為,雙曲線的左、右焦點(diǎn)分別為,點(diǎn)為線段上的動(dòng)點(diǎn),當(dāng)取得最小值和最大值時(shí),的面積分別為,若,則雙曲線的離心率為( ).

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下圖是2020215日至32日武漢市新增新冠肺炎確診病例的折線統(tǒng)計(jì)圖.則下列說(shuō)法不正確的是(

A.2020219日武漢市新增新冠肺炎確診病例大幅下降至三位數(shù)

B.武漢市在新冠肺炎疫情防控中取得了階段性的成果,但防控要求不能降低

C.2020219日至32日武漢市新增新冠肺炎確診病例低于400人的有8

D.2020215日到32日武漢市新增新冠肺炎確診病例最多的一天比最少的一天多1549

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,過(guò)焦點(diǎn)做傾斜角為的120°的直線交,兩點(diǎn),為坐標(biāo)原點(diǎn),

1)求拋物線的方程;

2)過(guò)拋物線焦點(diǎn),且與坐標(biāo)軸不垂直的直線l交拋物線于兩點(diǎn),,在拋物線上,且,,若,,四點(diǎn)都在圓上,求圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案