【題目】中,角A,B,C的對(duì)邊分別為ab,c,,且

1)求A;

2)求面積的最大值.

【答案】1;(2

【解析】

1)由題目條件a=1,可以將(1+b)(sinA-sinB=c-bsinC中的1換成a,達(dá)到齊次化的目的,再用正余弦定理解決;

2)已知∠A,要求ABC的面積,可用公式,因此把問(wèn)題轉(zhuǎn)化為求bc的最大值.

1)因?yàn)椋?/span>1+b)(sinA-sinB=c-bsinC,

由正弦定理得:(1+b)(a-b=c-bc

a+b)(a-b=c-bc,得b2+c2-a2=bc

由余弦定理得:,

所以

2)因?yàn)?/span>b2+c2-a2=bc

所以bc=b2+c2-1≥2bc-1,可得bc≤1;

所以,

當(dāng)且僅當(dāng)b=c=1時(shí),取等號(hào).

面積的最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】氣象意義上從春季進(jìn)入夏季的標(biāo)志為連續(xù)5天的日平均溫度均不低于22℃.現(xiàn)有甲、乙、丙三地連續(xù)5天的日平均溫度的記錄數(shù)據(jù):(記錄數(shù)據(jù)都是正整數(shù))

①甲地5個(gè)數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22;

②乙地5個(gè)數(shù)據(jù)的中位數(shù)為27,總體均值為24;

③丙地5個(gè)數(shù)據(jù)中有一個(gè)數(shù)據(jù)是32,總體均值為26,總體方差為10.8.

則肯定進(jìn)入夏季的地區(qū)有_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,角A,B,C的對(duì)邊分別是且滿(mǎn)足

(1)求角B的大;

(2)若的面積為為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將圓周上的所有點(diǎn)進(jìn)行三染色。證明:存在無(wú)窮多個(gè)等腰三角形,其頂點(diǎn)均為圓周上的同色點(diǎn)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將所有的正奇數(shù)按以下規(guī)律分組,第一組:1;第二組:3,57;第三組:911,13,1517; 表示n是第i組的第j個(gè)數(shù),例如,,則

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)處的切線(xiàn)方程為,求實(shí)數(shù)的值;

(2)若函數(shù)兩處取得極值,求實(shí)數(shù)的取值范圍;

(3)在(2)的條件下,若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為;直線(xiàn)的參數(shù)方程為(t為參數(shù)).直線(xiàn)與曲線(xiàn)分別交于兩點(diǎn).

(1)寫(xiě)出曲線(xiàn)的直角坐標(biāo)方程和直線(xiàn)的普通方程;

(2)若點(diǎn)的極坐標(biāo)為,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在“吃雞”游戲中,某玩家被隨機(jī)降落在邊長(zhǎng)為4的正三角形絕地島上,已知在離三個(gè)頂點(diǎn)距離都大于的區(qū)域內(nèi)可以搜集槍支彈藥、防彈衣、醫(yī)療包等生存物資,則該玩家能夠獲得生存物資的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰直角是直角,平面平面,,.

(1)求證;

(2)求直線(xiàn)與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案