7.在△ABC中,a,b,c分別為A,B,C的對(duì)邊,cos2$\frac{B}{2}$=$\frac{a+c}{2c}$,則△ABC是( 。
A.直角三角形B.正三角形
C.等腰三角形或直角三角形D.等腰直角三角形

分析 根據(jù)二倍角公式和正弦定理化簡(jiǎn),結(jié)合三角形內(nèi)角的范圍得出答案.

解答 解:∵cos2$\frac{B}{2}$=$\frac{a+c}{2c}$,
∴$\frac{1+cosB}{2}$=$\frac{sinA+sinC}{2sinC}$=$\frac{sinA}{2sinC}+\frac{1}{2}$,
∴sinA=sinCcosB,
又sinA=sin(B+C)=sinBcosC+cosBsinC,
∴sinBcosC=0,
∴sinB=0或cosC=0,
∵0<B<π,0<C<π,
∴sinB≠0,cosC=0,
∴C=$\frac{π}{2}$.
∴△ABC是直角三角形,
故選:A.

點(diǎn)評(píng) 本題考查了三角形的形狀判斷,正弦定理及三角恒等變換,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.直線(xiàn)l:xsinα+y-1=0(α∈R),則直線(xiàn)l的傾斜角的取值范圍為$[0,\frac{π}{4}]∪[\frac{3π}{4},π)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知等差數(shù)列{an},如果a4=4,a3+a7=10.
(1)求數(shù)列{an}的通項(xiàng)公式an
(2)設(shè)bn=$\frac{{a}_{n}}{{2}^{n}}$,求bn的前n和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且asinB=-$\sqrt{3}$bcos(B+C)
(1)求角A的大小
(2)若a=$\sqrt{13}$,c=3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=log3(2x+1),則f(3)等于( 。
A.1B.$\sqrt{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)實(shí)數(shù)x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{1≤x≤3}\\{-1≤x-y≤0}\end{array}\right.$
(Ⅰ)求z=2x-y的最大值;
(Ⅱ)求z=$\sqrt{{x}^{2}+{y}^{2}}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,已知四邊形ABCD為正方形,EA⊥平面ABCD,CF∥EA,且EA=$\sqrt{2}$AB=2CF=2
(1)求證:EC⊥平面BDF;
(2)求二面角E-BD-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=x3-ax2-3x
(1)若函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍
(2)若x=-$\frac{1}{3}$是函數(shù)f(x)的極值點(diǎn),求函數(shù)f(x)在[1,a]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知命題p:任意x∈R,sinx≤1,則非p是存在x0∈R,sinx0>1.

查看答案和解析>>

同步練習(xí)冊(cè)答案