設(shè)向量,,定義一種向量積:.已知向量,,點(diǎn)P在的圖象上運(yùn)動(dòng),點(diǎn)Q在的圖象上運(yùn)動(dòng),且滿足(其中O為坐標(biāo)原點(diǎn)),則在區(qū)間上的最大值是( )

A.4 B.2 C. D.

 

A

【解析】

試題分析:因?yàn)辄c(diǎn)P在的圖像上運(yùn)動(dòng),所以設(shè)點(diǎn)P的坐標(biāo)為,設(shè)Q點(diǎn)的坐標(biāo)為,則

,即為點(diǎn)Q軌跡的參數(shù)方程,化為普通方程可得,即,當(dāng)時(shí), ,再根據(jù)余弦函數(shù)的圖像可得,所以函數(shù)在區(qū)間上的最大值是4,故選A.

考點(diǎn):參數(shù)方程 新概念 余弦函數(shù)

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省南京市高三年級(jí)第三次模擬考試數(shù)學(xué)試卷(解析版) 題型:解答題

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且+1=

(1)求B;

(2)若cos(C+)=,求sinA的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省韶關(guān)市高三4月高考模擬(二模)文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)求的值;

(2)當(dāng)時(shí),求函數(shù)的值域.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省肇慶市高三3月第一次模擬理科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)雙曲線C:(a>0,b>0)的一個(gè)焦點(diǎn)坐標(biāo)為(,0),離心率, A、B是雙曲線上的兩點(diǎn),AB的中點(diǎn)M(1,2).

(1)求雙曲線C的方程;

(2)求直線AB方程;

(3)如果線段AB的垂直平分線與雙曲線交于C、D兩點(diǎn),那么A、B、C、D四點(diǎn)是否共圓?為什么?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省肇慶市高三3月第一次模擬理科數(shù)學(xué)試卷(解析版) 題型:填空題

已知集合A={4},B={1,2},C={1,3,5},從這三個(gè)集合中各取一個(gè)元素構(gòu)成空間直角坐標(biāo)系中的點(diǎn)的坐標(biāo),則確定的不同點(diǎn)的個(gè)數(shù)為 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省肇慶市高三3月第一次模擬理科數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)是虛數(shù)單位,,為復(fù)數(shù)的共軛復(fù)數(shù),則 ( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省肇慶市高三3月第一次模擬文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知某山區(qū)小學(xué)有100名四年級(jí)學(xué)生,將全體四年級(jí)學(xué)生隨機(jī)按00~99編號(hào),并且按編號(hào)順序平均分成10組.現(xiàn)要從中抽取10名學(xué)生,各組內(nèi)抽取的編號(hào)按依次增加10進(jìn)行系統(tǒng)抽樣.

(1)若抽出的一個(gè)號(hào)碼為22,則此號(hào)碼所在的組數(shù)是多少?據(jù)此寫出所有被抽出學(xué)生的號(hào)碼;

(2)分別統(tǒng)計(jì)這10名學(xué)生的數(shù)學(xué)成績(jī),獲得成績(jī)數(shù)據(jù)的莖葉圖如圖4所示,求該樣本的方差;

(3)在(2)的條件下,從這10名學(xué)生中隨機(jī)抽取兩名成績(jī)不低于73分的學(xué)生,求被抽取到的兩名學(xué)生的成績(jī)之和不小于154分的概率.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省湛江市高三高考模擬測(cè)試二理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)證明:對(duì)任意的,存在唯一的,使

(3)設(shè)(2)中所確定的關(guān)于的函數(shù)為,證明:當(dāng)時(shí),有.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省湛江市高三高考模擬測(cè)試二文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知集合,,則( )

A. B. C. D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案