3.函數(shù)$y=\frac{1}{x}$的圖象向右平移2個單位,再向下平移1個單位后的函數(shù)解析式是$y=\frac{1}{x-2}-1$.

分析 根據(jù)函數(shù)圖象平移規(guī)律直接求解.

解答 解:函數(shù)$y=\frac{1}{x}$的圖象向右平移2個單位,可得y=$\frac{1}{x-2}$,再向下平移1個單位,可得$y=\frac{1}{x-2}-1$;
故答案為:$y=\frac{1}{x-2}-1$.

點評 函數(shù)圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)復(fù)數(shù)z1=1+i,z2=1-bi,若z1•z2為純虛數(shù),則實數(shù)b=( 。
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.四面體A-BCD中,AB=AC=DB=DC=2$\sqrt{6}$,AD=BC=4,則它的外接球表面積等于32π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知f(x)=2$\sqrt{3}$sinxcosx+2cos2x-1.
(1)求f(x)的最大值,以及該函數(shù)取最大值時x的取值集合;
(2)在△ABC中,a、b、c分別是角A、B、C所對的邊長,且a=1,b=$\sqrt{2}$,f(A)=2,求角C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.$\lim_{x→4}\frac{{\sqrt{x}-2}}{x-4}$=$\frac{1}{4}$;    $\lim_{x→3}\frac{{{x^2}-5x+6}}{{{x^2}-8x+15}}$=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知a,b為正實數(shù),且$\frac{1}{a}$+$\frac{2}$=2,若a+b≥c對滿足條件的a,b恒成立,則c的取值范圍是( 。
A.(-∞,$\frac{3}{2}$+$\sqrt{2}$]B.(-∞,3]C.(-∞,6]D.(-∞,3+2$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.不等式-x2+5x>6的解集是(2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)y=$\left\{\begin{array}{l}(4-\frac{a}{2})x+2\;(x≤1)\\{a^x}\;\;\;(x>1)\end{array}$是R上的增函數(shù),則實數(shù)a的取值范圍是[4,8).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知$\overrightarrow a=(-3,4),\overrightarrow b=(-2,1)$,則$\overrightarrow a$在$\overrightarrow b$上的投影為( 。
A.-2B.2C.$-2\sqrt{5}$D.$2\sqrt{5}$

查看答案和解析>>

同步練習(xí)冊答案