分析 復(fù)數(shù)z=x+yi,x,y∈R,設(shè)P(x,y),由|z-3|=1,表示以(3,0)為圓心,1為半徑的圓.則x2+y2+4x+1=(x+2)2+y2-3.求出點Q(-2,0)與點Q的距離|PQ|,即可得出.
解答 解:復(fù)數(shù)z=x+yi,x,y∈R,設(shè)P(x,y),
由|z-3|=1,表示復(fù)平面上以(3,0)為圓心,1為半徑的圓.
則x2+y2+4x+1=(x+2)2+y2-3.
點Q(-2,0)與點Q的距離|PQ|=$\sqrt{(3+2)^{2}+0}$=5.
∴(x2+y2+4x+1)max=(5+1)2-3=33.
故答案為:33.
點評 本題考查了復(fù)數(shù)形式的圓的方程、兩點之間的距離公式、點與圓的位置關(guān)系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {2} | B. | {3} | C. | {2,3} | D. | {3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[1-\sqrt{5},1+\sqrt{5}]$ | B. | $[1-\sqrt{5},-1]$ | C. | $[-2,1+\sqrt{5}]$ | D. | $[-\sqrt{2},-1]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{5}{13}$ | B. | $\frac{5}{13}$ | C. | $\frac{5}{12}$ | D. | -$\frac{5}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 32 | B. | 24 | C. | 18 | D. | 16 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com