已知橢圓的焦點(diǎn)為F1、F2,P為橢圓上一點(diǎn),∠F1PF2=60°,則△PF1F2的面積是   
【答案】分析:利用橢圓定義求出|PF1|+|PF2|和|F1F2|的值,通過余弦定理求出|PF1||PF2|的值,再代入三角形的面積公式即可.
解答:解:由橢圓方程可知,
a=5,b=3,∴c=4
∵P點(diǎn)在橢圓上,F(xiàn)1、F2為橢圓的左右焦點(diǎn),
∴|PF1|+|PF2|=2a=10,|F1F2|=2c=8
在△PF1F2中,
cos∠F1PF2=
=
=
=
=cos60°
=,
∴72-4|PF1||PF2|=2|PF1||PF2|,
∴|PF1||PF2|=12,
又∵在△F1PF2中,
=|PF1||PF2|sin∠F1PF2
=×12sin60°=3;
故答案為:3
點(diǎn)評:本題主要考查橢圓中焦點(diǎn)三角形的面積的求法,關(guān)鍵是應(yīng)用橢圓的定義和余弦定理轉(zhuǎn)化,考查計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的焦點(diǎn)為F1(-1,0),F(xiàn)2(1,0),直線l:x-y+5=0,則
(1)經(jīng)過直線l上一點(diǎn)P且長軸長最短的橢圓方程為
 
,(2)點(diǎn)P的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知橢圓的焦點(diǎn)為F1(0,-5),F(xiàn)2(0,5),點(diǎn)P(3,4)在橢圓上,求它的方程
(2)已知雙曲線頂點(diǎn)間的距離為6,漸近線方程為y=±
32
x,求它的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的焦點(diǎn)為F1(-1,0)、F2(1,0),直線x=4是它的一條準(zhǔn)線.
(1)求橢圓的方程;
(2)設(shè)A1、A2分別是橢圓的左頂點(diǎn)和右頂點(diǎn),P是橢圓上滿足|PA1|-|PA2|=2的一點(diǎn),求tan∠A1PA2的值;
(3)若過點(diǎn)(1,0)的直線與以原點(diǎn)為頂點(diǎn)、A2為焦點(diǎn)的拋物線相交于點(diǎn)M、N,求MN中點(diǎn)Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的焦點(diǎn)為F1(-6,0),F(xiàn)2(6,0),且該橢圓過點(diǎn)P(5,2).
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)若橢圓上的點(diǎn)M(x0,y0)滿足MF1⊥MF2,求y0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的焦點(diǎn)為F1(0,-2
2
)
,F2(0,2
2
)
,離心率為e,已知
2
3
,e,
4
3
成等比數(shù)列;
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知P為橢圓上一點(diǎn),求
PF1
PF2
最大值.

查看答案和解析>>

同步練習(xí)冊答案