5.(1)已知等比數(shù)列{an}中,a1=2且a1+a2=6.求數(shù)列{an}的前n項和Sn的值;
(2)已知tanθ=3,求$\frac{{2{{cos}^2}\frac{θ}{2}+sinθ-1}}{sinθ-cosθ}$的值.

分析 (1)由已知利用等比數(shù)列的通項公式、前n項和公式求得數(shù)列{an}的前n項和為Sn的值.
(2)利用同角三角函數(shù)的基本關(guān)系、二倍角公式,求得要求式子的值.

解答 解:(1)設(shè)等比數(shù)列{an}的公比為q,由已知得a1=2,且a1+a2=2+2q=6,∴q=2,∴an=2n
從而,Sn=$\frac{{a}_{1}•(1{-q}^{n})}{1-q}$=2n+1-2.
(2)∵tanθ=3,∴$\frac{{2{{cos}^2}\frac{θ}{2}+sinθ-1}}{sinθ-cosθ}=\frac{sinθ+cosθ}{sinθ-cosθ}$=$\frac{tanθ+1}{tanθ-1}$=2.

點評 本題主要考查等比數(shù)列的通項公式、前n項和公式的應(yīng)用,同角三角函數(shù)的基本關(guān)系、二倍角公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列敘述中,正確的是( 。
A.$\overrightarrow{AB}$+$\overrightarrow{BA}$=$\overrightarrow{0}$
B.若|$\overrightarrow{a}$|=|$\overrightarrow$|且$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow{a}$=$\overrightarrow$
C.若|$\overrightarrow{a}$-$\overrightarrow$|=|$\overrightarrow{a}$+$\overrightarrow$|,則$\overrightarrow{a}$⊥$\overrightarrow$
D.若向量$\overrightarrow$與向量$\overrightarrow{a}$共線,則有且只有一個實數(shù)λ,使得$\overrightarrow$=λ$\overrightarrow{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.解下列關(guān)于未知數(shù)x的不等式:
(1)|x-1|>2;
(2)a1-x<ax+1(0<a<1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知a>0,b>0且2a+b=1,則$\frac{1}{a}+\frac{2}$的最小值為( 。
A.4B.6C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)k∈R,函數(shù)f(x)=lnx-kx.
(1)若k=2,求曲線y=f(x)在P(1,-2)處的切線方程;
(2)若方程f(x)=0無根,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知虛數(shù)z滿足|2z+5|=|z+10|.
(1)求|z|;
(2)是否存在實數(shù)m,是$\frac{z}{m}$+$\frac{m}{z}$為實數(shù),若存在,求出m的值;若不存在,說明理由;
(3)若(1-2i)z在復(fù)平面內(nèi)對應(yīng)的點在第一、三象限的角平分線上,求復(fù)數(shù)z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)$h(x)=\frac{4}{{\sqrt{x}}}$,則h'(4)等于( 。
A.$-\frac{{\sqrt{2}}}{2}$B.$\frac{1}{2}$C.$-\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知定義在R上的函數(shù)$f(x)=\frac{1}{3}a{x^3}+{x^2}+ax+1$既有極大值又有極小值,則實數(shù)a的取值范圍是(  )
A.(-∞,-1)∪(1,+∞)B.[-1,0)∪(0,1]C.(-1,1)D.(-1,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若數(shù)列{an},{bn}的通項公式分別是an=(-1)2017•a,bn=2+$\frac{{{{(-1)}^{n+2018}}}}{n}且{a_n}<{b_n}$對任意n∈N*恒成立,則常數(shù)a的取值范圍是[-2,1).

查看答案和解析>>

同步練習(xí)冊答案