【題目】已知函數(shù)若關于的方程有且只有一個實數(shù)根,則實數(shù)k的取值范圍是_____.
【答案】
【解析】
作出f(x)的函數(shù)圖象,由直線y=kx﹣2過(0,﹣2),聯(lián)立,得x2﹣kx+2=0,由△=0,解得k值,求出過(1,1)與(0,﹣2)兩點的直線的斜率k,數(shù)形結合即可得到實數(shù)k的取值范圍.
作出y=f(x)與y=kx﹣2的函數(shù)圖象如圖所示:
直線y=kx﹣2過(0,﹣2),
聯(lián)立,得x2﹣kx+2=0.
由△=k2﹣8=0,得k.
又過(1,1)與(0,﹣2)兩點的直線的斜率k=3.
易知直線經(jīng)過點(2,0)時恰好與曲線相切.
由圖可知,若關于x的方程f(x)=kx﹣2有且只有一個實數(shù)根,
則實數(shù)k的取值范圍為(0,3)∪{}.
故答案為:(0,3)∪{}.
科目:高中數(shù)學 來源: 題型:
【題目】P是圓上的動點,P點在x軸上的射影是D,點M滿足.
(1)求動點M的軌跡C的方程,并說明軌跡是什么圖形;
(2)過點的直線l與動點M的軌跡C交于不同的兩點A,B,求以OA,OB為鄰邊的平行四邊形OAEB的頂點E的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年9月23日,在省市舉辦的2019年中國農(nóng)民豐收節(jié)“新電商與農(nóng)業(yè)科技創(chuàng)新”論壇上,來自政府相關部門的領導及11所中國高校的專家學者以“農(nóng)業(yè)科技創(chuàng)新與鄉(xiāng)村振興”、“新農(nóng)人與脫貧攻堅”為核心議題各抒己見,農(nóng)產(chǎn)品方面的科技創(chuàng)新越來越成為21世紀大國崛起的一項重大突破.科學家對某農(nóng)產(chǎn)品每日平均增重量(單位:)與每日營養(yǎng)液注射量(單位:)之間的關系統(tǒng)計出表1一組數(shù)據(jù):
表1
(單位:) | 1 | 2 | 3 | 4 | 5 |
(單位:) | 2 | 3.5 | 5 | 6.6 | 8.4 |
(1)根據(jù)表1和表2的相關統(tǒng)計值求關于的線性回歸方程;
(2)計算擬合指數(shù)的值,并說明線性回歸模型的擬合效果(的值在.98以上說明擬合程度好);
(3)若某日該農(nóng)產(chǎn)品的營養(yǎng)液注釋量為,預測該日這種農(nóng)產(chǎn)品的平均增長重量(結果精確到0.1).
附:①
表2
92.4 | 55 | 25 | 0.04 |
②對于一組數(shù)據(jù),,…,,其回歸線的斜率和截距的最小二乘估計分別為:,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C的參數(shù)方程為(t為參數(shù)),以原點O為極點,x軸的非負半軸為極軸建立極坐標系,過極點的兩射線、相互垂直,與曲線C分別相交于A、B兩點(不同于點O),且的傾斜角為銳角.
(1)求曲線C和射線的極坐標方程;
(2)求△OAB的面積的最小值,并求此時的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)遞減區(qū)間;
(2)求實數(shù)的值,使得是函數(shù)唯一的極值點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),若關于的方程恰有兩個不相等的實數(shù)根, 則實數(shù)的取值范圍是
A. B. , C. , D. ,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為,將直線繞極點逆時針旋轉(zhuǎn)個單位得到直線.
(1)求和的極坐標方程;
(2)設直線和曲線交于兩點,直線和曲線交于兩點,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com