若變量x,y滿足約束條件
3≤2x+y≤9
6≤x-y≤9
,則z=2x+3y的最小值為
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求z的最小值.
解答: 解:作出不等式對應(yīng)的平面區(qū)域(陰影部分),
由z=2x+3y,得y=-
2
3
x+
z
3
,
平移直線y=-
2
3
x+
z
3
,由圖象可知當直線y=-
2
3
x+
z
3
經(jīng)過點B時,直線y=-
2
3
x+
z
3
的截距最小,此時z最小.
2x+y=3
x-y=9
,解得
x=4
y=-5

即B(4,-5).
此時z的最小值為z=2×4+3×(-5)=8-15=-7,
故答案為:-7.
點評:本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|x|+
x2
,判斷并證明函數(shù)f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
4
=1上一點到橢圓兩焦點的距離之和為4
2

(Ⅰ)求a的值及橢圓的離心率;
(Ⅱ)順次連結(jié)橢圓的頂點得到菱形A1B1A2B2,求該菱形的內(nèi)切圓方程;
(Ⅲ)直線l與(Ⅱ)中的圓相切并交橢圓于A,B兩點,求|AB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=|2x+1|在x∈[-1,a]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=
15-2x-x2
的定義域為A,函數(shù)y=a-2x-x2的值域為B,全集為R,(∁RA)∪B=R,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓3x2+4y2=12的焦點坐標是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={y|y=x2-2x-1},B={x|x=-y2+2y+5},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①在區(qū)間(0,+∞)上,函數(shù)y=x-1,y=x 
1
2
,y=(x-1)2,y=x3中有三個是增函數(shù);
②若logm3<logn3<0,則0<n<m<1;
③若函數(shù)f(x)是奇函數(shù),則f(x-1)的圖象關(guān)于點(1,0)對稱;
④已知函數(shù)f(x)=
3x-2,x≤2
log3(x-1),x>2
,則方程f(x)=
1
2
有2個實數(shù)根;
以上命題是真命題的是:
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在一座20m高的觀測臺測得對面一水塔塔頂?shù)难鼋菫?0°,塔底的俯角為45°,觀測臺底部與塔底在同一地平面,那么這座水塔的高度是
 
m.

查看答案和解析>>

同步練習冊答案