已知等差數(shù)列{an}的前n項和為Sn,a1+a3=10,a6=11,則S7=   
【答案】分析:先根據(jù)等差中項的性質(zhì)求出a2,再根據(jù)等差數(shù)列的性質(zhì)可知項數(shù)之和相等的兩項之和相等即a1+a7=a2+a6,求出a1+a7的值,然后利用等差數(shù)列的前n項和的公式表示出S7,將a1+a7的值代入即可求出.
解答:解:因為a1+a3=10=2a2,
∴a2=5;
∴a1+a7=a2+a6=5+11=16.
所以 S7===56.
故答案為:56.
點評:本題考查等差數(shù)列的性質(zhì)和等差數(shù)列前n項和公式.是一道基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項公式;     
(2)求數(shù)列{|an|}的前n項和;
(3)求數(shù)列{
an2n-1
}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若{an}為遞增數(shù)列,請根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習冊答案