已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=an+n-4,bn=(-1)n(an-3n+21),其中λ為實(shí)數(shù),n為正整數(shù).
(1)對(duì)任意實(shí)數(shù)λ,證明:數(shù)列{an}不是等比數(shù)列;
(2)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的首項(xiàng).
(1)求證:數(shù)列為等比數(shù)列;
(2)記,若,求最大正整數(shù)的值;
(3)是否存在互不相等的正整數(shù),使成等差數(shù)列,且成等比數(shù)列?如果存在,請(qǐng)給予證明;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}中,a1=1,an+1= (n∈N*).
(1)求數(shù)列{an}的通項(xiàng)an;
(2)若數(shù)列{bn}滿足bn=(3n-1)an,數(shù)列{bn}的前n項(xiàng)和為Tn,若不等式(-1)nλ<Tn對(duì)一切n∈N*恒成立,求λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列記
(1)求b1、b2、b3、b4的值;
(2)求數(shù)列的通項(xiàng)公式及數(shù)列的前n項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在數(shù)列{an}中,a1=1,{an}的前n項(xiàng)和Sn滿足2Sn=an+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若存在n∈N*,使得λ≤,求實(shí)數(shù)λ的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的前項(xiàng)和為滿足.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知是等比數(shù)列的前項(xiàng)和,、、成等差數(shù)列,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)是否存在正整數(shù),使得?若存在,求出符合條件的所有的集合;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)是公比大于1的等比數(shù)列,為數(shù)列的前項(xiàng)和.已知,且構(gòu)成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)令,求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在數(shù)列中,,,對(duì)任意成立,令,且是等比數(shù)列.
(1)求實(shí)數(shù)的值;
(2)求數(shù)列的通項(xiàng)公式;
(3)求和:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com