【題目】某學(xué)校為了調(diào)查學(xué)生在一周生活方面的支出情況,抽出了一個(gè)容量為n的樣本,其頻率分布直方圖如圖所示,其中支出在元的學(xué)生有60人,則下列說(shuō)法正確的是______

A.樣本中支出在元的頻率為

B.樣本中支出不少于40元的人數(shù)有132

C.n的值為200

D.若該校有2000名學(xué)生,則定有600人支出在

【答案】BC

【解析】

A中,樣本中支出在元的頻率為;在B中,樣本中支出不少于40元的人數(shù)有:;在C中,若該校有2000名學(xué)生,則可能有600人支出在元.

由頻率分布直方圖得:

A中,樣本中支出在元的頻率為:,故A錯(cuò)誤;

B中,樣本中支出不少于40元的人數(shù)有:,故B正確;

C中,,故n的值為200,故C正確;

D.若該校有2000名學(xué)生,則可能有600人支出在元,故D錯(cuò)誤.

故答案為:BC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|x2-7x+60}B={x|4-txt},R為實(shí)數(shù)集.

1)當(dāng)t=4時(shí),求ABARB;

2)若AB=A,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C的圓心在直線上,且與直線相切于點(diǎn)

1)求圓C的方程;

2)是否存在過(guò)點(diǎn)的直線與圓C交于兩點(diǎn),且的面積為O為坐標(biāo)原點(diǎn)),若存在,求出直線的方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合題。
(1)設(shè)不等式(x﹣a)(x+a﹣2)<0的解集為N, ,若x∈N是x∈M的必要條件,求a的取值范圍.
(2)已知命題:“x∈{x|﹣1<x<1},使等式x2﹣x﹣m=0成立”是真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)用定義證明函數(shù)上是增函數(shù);

(2)探究是否存在實(shí)數(shù),使得函數(shù)為奇函數(shù)?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由;

3)在(2)的條件下,解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)投入81萬(wàn)元經(jīng)銷(xiāo)某產(chǎn)品,經(jīng)銷(xiāo)時(shí)間共60個(gè)月,市場(chǎng)調(diào)研表明,該企業(yè)在經(jīng)銷(xiāo)這個(gè)產(chǎn)品期間第x個(gè)月的利潤(rùn) (單位:萬(wàn)元),為了獲得更多的利潤(rùn),企業(yè)將每月獲得的利潤(rùn)投入到次月的經(jīng)營(yíng)中,記第x個(gè)月的當(dāng)月利潤(rùn)率 ,例如:
(1)求g(10);
(2)求第x個(gè)月的當(dāng)月利潤(rùn)率g(x);
(3)該企業(yè)經(jīng)銷(xiāo)此產(chǎn)品期間,哪個(gè)月的當(dāng)月利潤(rùn)率最大,并求該月的當(dāng)月利潤(rùn)率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是定義在[﹣1,1]上的奇函數(shù),且f(1)=1,若m,n∈[﹣1,1],m+n≠0時(shí),有
(1)解不等式 ;
(2)若f(x)≤t2﹣2at+1對(duì)所有x∈[﹣1,1],a∈[﹣1,1]恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次抽樣調(diào)查中測(cè)得樣本的5個(gè)樣本點(diǎn),數(shù)值如下表:

0.25

0.5

1

2

4

16

12

5

2

1

(1)根據(jù)散點(diǎn)圖判斷,哪一個(gè)適宜作為關(guān)于的回歸方程類(lèi)型?(給出判斷即可,不必說(shuō)明理由)

(2)根據(jù)(1)的判斷結(jié)果試建立之間的回歸方程.(注意計(jì)算結(jié)果保留整數(shù))

(3)由(2)中所得設(shè)z=+,試求z的最小值。

參考數(shù)據(jù)及公式如下:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<)的圖象與x軸的交點(diǎn)中,相鄰兩條對(duì)稱(chēng)軸之間的距離為,且圖象上一個(gè)最低點(diǎn)為M.

(1)求ω,φ的值;

(2)求f(x)的圖像的對(duì)稱(chēng)中心;

(3)當(dāng)x∈時(shí),求f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案