【題目】在直角坐標(biāo)系xOy中,圓C1和C2的參數(shù)方程分別是 (φ為參數(shù))和 (φ為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求圓C1和C2的極坐標(biāo)方程;
(2)射線(xiàn)OM:θ=a與圓C1的交點(diǎn)為O、P,與圓C2的交點(diǎn)為O、Q,求|OP||OQ|的最大值.

【答案】
(1)解:圓C1 (φ為參數(shù)),

轉(zhuǎn)化成直角坐標(biāo)方程為:(x﹣2)2+y2=4

即:x2+y2﹣4x=0

轉(zhuǎn)化成極坐標(biāo)方程為:ρ2=4ρcosθ

即:ρ=4cosθ

圓C2 (φ為參數(shù)),

轉(zhuǎn)化成直角坐標(biāo)方程為:x2+(y﹣1)2=1

即:x2+y2﹣2y=0

轉(zhuǎn)化成極坐標(biāo)方程為:ρ2=2ρsinθ

即:ρ=2sinθ


(2)解:射線(xiàn)OM:θ=α與圓C1的交點(diǎn)為O、P,與圓C2的交點(diǎn)為O、Q

則:P(2+2cosα,2sinα),Q(cosα,1+sinα)

則:|OP|= = ,

|OQ|= =

則:|OP||OQ|=

=

設(shè)sinα+cosα=t(

則:

則關(guān)系式轉(zhuǎn)化為:

4 =

由于:

所以:(|OP||OQ|)max=


【解析】(1)首先把兩圓的參數(shù)方程轉(zhuǎn)化成直角坐標(biāo)方程,再把直角坐標(biāo)方程為轉(zhuǎn)化成極坐標(biāo)方程.(2)根據(jù)圓的坐標(biāo)形式.利用兩點(diǎn)間的距離公式,再利用換元法進(jìn)一步求出最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓的半徑為2,點(diǎn)是圓的六等分點(diǎn)中的五個(gè)點(diǎn).

(1)從中隨機(jī)取三點(diǎn)構(gòu)成三角形,求這三點(diǎn)構(gòu)成的三角形是直角三角形的概率;

(2)在圓上隨機(jī)取一點(diǎn),求的面積大于的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)= 為R的單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是( )
A.(0,+∞)
B.[﹣1,0)
C.(﹣2,0)
D.(﹣∞,﹣2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若,求的單調(diào)區(qū)間;

2)若在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】提高過(guò)江大橋的車(chē)輛通行能力可改善整個(gè)城市的交通狀況,在一般情況下,大橋上的車(chē)流速度v(單位:千米/小時(shí))是車(chē)流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車(chē)流密度達(dá)到200/千米時(shí),造成堵塞,此時(shí)車(chē)流速度為0;當(dāng)車(chē)流密度不超過(guò)20/千米時(shí),車(chē)流速度為60千米/小時(shí),研究表明:當(dāng)20≤x≤200時(shí),車(chē)流速度v是車(chē)流密度x的一次函數(shù).

1)當(dāng)0≤x≤200時(shí),求函數(shù)vx)的表達(dá)式;

2)當(dāng)車(chē)流密度x為多大時(shí),車(chē)流量(單位時(shí)間內(nèi)通過(guò)橋上某觀(guān)測(cè)點(diǎn)的車(chē)輛數(shù),單位:輛/小時(shí))fx=xvx)可以達(dá)到最大,并求出最大值.(精確到1/小時(shí)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱柱中, 平面, , , 的中點(diǎn).

(Ⅰ)求四棱錐的體積;

(Ⅱ)設(shè)點(diǎn)在線(xiàn)段上,且直線(xiàn)與平面所成角的正弦值為,求線(xiàn)段的長(zhǎng)度;

判斷線(xiàn)段上是否存在一點(diǎn),使得?(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某糧庫(kù)擬建一個(gè)儲(chǔ)糧倉(cāng)如圖所示,其下部是高為2的圓柱,上部是母線(xiàn)長(zhǎng)為2的圓錐,現(xiàn)要設(shè)計(jì)其底面半徑和上部圓錐的高,若設(shè)圓錐的高,儲(chǔ)糧倉(cāng)的體積為.

(1)求關(guān)于的函數(shù)關(guān)系式;(圓周率用表示)

(2)求為何值時(shí),儲(chǔ)糧倉(cāng)的體積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從2名男生和2名女生中任意選擇兩人在星期六、星期日參加某公益活動(dòng),每天一人,則星期六安排一名男生、星期日安排一名女生的概率為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:直線(xiàn),一個(gè)圓與軸正半軸與軸正半軸都相切,且圓心到直線(xiàn)的距離為

)求圓的方程

是直線(xiàn)上的動(dòng)點(diǎn), , 是圓的兩條切線(xiàn), , 分別為切點(diǎn),求四邊形的面積的最小值.

)圓與軸交點(diǎn)記作,過(guò)作一直線(xiàn)與圓交于, 兩點(diǎn), 中點(diǎn)為,求最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案