15.已知a+b=2,則4a+4b的最小值為( 。
A.2B.4C.8D.16

分析 首先,根據(jù)基本不等式,得到4a+4b≥2$\sqrt{{4}^{a}•{4}^}$,然后,根據(jù)所給條件確定其值即可.

解答 解:∵a+b=2,
∴4a+4b≥2$\sqrt{{4}^{a}•{4}^}$
=2$\sqrt{{4}^{a+b}}$=2×4=8.
∴4a+4b的最小值8.
故選:C.

點(diǎn)評 本題重點(diǎn)考查了基本不等式,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若函數(shù)y=sin(ωx-φ)(ω>0,|φ|<π)在區(qū)間$[{-\frac{π}{2},π}]$的簡圖如圖所示,則ω,φ的值分別是(  )
A.$ω=2,φ=\frac{π}{3}$B.$ω=2,φ=-\frac{2π}{3}$C.$ω=\frac{1}{2},φ=\frac{π}{3}$D.$ω=\frac{1}{2},φ=-\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)經(jīng)過點(diǎn)A(0,-1),且離心率為$\frac{{\sqrt{2}}}{2}$.求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知f(x)=$\left\{\begin{array}{l}{{a}^{x},x>1}\\{(4-\frac{a}{2})x+2,x≤1}\end{array}\right.$對任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0成立,那么a的取值范圍是(  )
A.(1,+∞)B.[4,8)C.(4,8)D.(1,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)$f(x)=|{\frac{1}{x}+a}|+|{x-a}|({x≠0})$
(1)若f(1)>4,求a的取值范圍;
(2)證明f(x)≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在二項(xiàng)式($\root{3}{{x}^{2}}$-$\frac{1}{2}$)n的展開式中,只有第5項(xiàng)的二項(xiàng)式系數(shù)最大,則n=8;展開式中的第4項(xiàng)為-7${x}^{\frac{10}{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.tan(-330°)的值為(  )
A.$\frac{{\sqrt{3}}}{3}$B.$-\sqrt{3}$C.$-\frac{{\sqrt{3}}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=x${\;}^{3}-\frac{9}{2}{x}^{2}+6x-a$.
(1)求f(x)的極值;
(2)若方程f(x)=0有且僅有一個(gè)實(shí)根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=ax3+bx+c的圖象過點(diǎn)(0,-16),且在x=1處的切線方程是y=4x-18.
(1)求函數(shù)y=f(x)的解析式;
(2)若直線為曲線y=f(x)的切線,且經(jīng)過原點(diǎn),求直線的方程及切點(diǎn)坐標(biāo);
(3)若函數(shù)g(x)=x3+x2-lnx,記F(x)=f(x)-g(x),求函數(shù)y=F(x)在區(qū)間$[\frac{1}{2},3]$上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案