(本小題滿分12分)
已知圓的方程是:,其中,且
(1)求圓心的軌跡方程。
(2)求恒與圓相切的直線的方程;
(1)圓心的軌跡方程為
(2)直線方程為
(1)圓心坐標為(,2-),又設圓心坐標為(x,y),則有  消去參數(shù)得 .          即 所求的圓心的軌跡方程為
(2)圓的圓心坐標為(,),半徑為,顯然滿足題意切線一定存在斜率,    可設所求切線方程為,即
則圓心到直線的距離應等于圓的半徑,即恒成立,
恒成立,比較系數(shù)得,解之得
所以所求的直線方程為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

14分)如圖,半圓O的半徑為2,A為直徑延長線上的一點,且OA=4,B為半圓周上任意一點,從AB向外作等邊,設,(1)將AB的長用表示,(2)將四邊形OACB的面積用表示,(3)問當為何值時,四邊形OACB的面積最大?最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

選修4-1:幾何證明選講
如圖,圓O的直徑AB=10,弦DE⊥AB于點H,AH=2。
(1)求DE的長;
(2)延長ED到P,過P作圓O的切線,切點為C,若PC=2,求PD的長。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設圓C滿足:(1)截軸所得弦長為2;(2)被軸分成兩段圓弧,其弧長的比為5∶1.
在滿足條件(1)、(2)的所有圓中,求圓心到直線:3-4=0的距離最小的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分10分)已知圓方程為:.
(1)直線過點,且與圓交于、兩點,若,求直線的方程;
(2)過圓上一動點作平行于軸的直線,設軸的交點為,若向量,求動點的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知P是圓上或圓內的任意一點,O為坐標原點,,則的最小值為( )
A.B.C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

一束光線從點出發(fā),經(jīng)x軸反射到圓上的最短路程是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過點的方程為      。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

上有且只有兩點到原點的距離為1,則實數(shù)的取值范圍是  ▲網(wǎng)

查看答案和解析>>

同步練習冊答案