(本題滿分10分)如圖,在四棱錐
中,底面
是邊長為2的正方形,且
,
=
,
為
的中點. 求:
(Ⅰ) 異面直線CM與PD所成的角的余弦值;
(Ⅱ)直線
與平面
所成角的正弦值.
20. 解:如圖,以
為一組基底建立空間直角坐標系,
由題可知,
,
,
,
( I )
,
設直線
與直線
所成角為
,則
( II )
設平面
的法向量為
因為
,則
,所以
設直線
與平面
所成的角為
,
所以
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分9分)
如圖所示的多面體中,已知直角梯形
和矩形
所在的平面互相垂直,
,
,
,
.
(Ⅰ)證明:
平面
;
(Ⅱ)設二面角
的平面角為
,求
的值;
(Ⅲ)
為
的中點,在
上是否存在一點
,使得
∥平面
?若存在,求出
的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
體積為
的球的內接正方體的棱長為_____________。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分15分) 如圖所示,在等腰梯形
中,
,
,
為
中點.將
沿
折起至
,使得平面
平面
,
分別為
的中點.
(Ⅰ) 求證:
面
;
(Ⅱ) 求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題共14分)如圖,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,
,CC1=4,M是棱CC1上一點.
(Ⅰ)求證:BC⊥AM;
(Ⅱ)若M,N分別是CC1,AB的中點,求證:CN //平面AB1M;
(Ⅲ)若
,求二面角A-MB1-C的大。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,四邊形
為矩形,
平面
,
,
平面
于點
,且點
在
上.
(Ⅰ)求證:
;
(Ⅱ)求四棱錐
的體積;
(Ⅲ)設點
在線段
上,且
,
試在線段
上確定一點
,使得
平面
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
長方體ABCD—A
B
C
1D
1中,
,則點
到直線AC的距離是
A.3 | B. | C. | D.4 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
底面是正方形的四棱錐
A-
BCDE中,
AE⊥底面
BCDE,且
AE=
CD=
,
G、
H分別是
BE、
ED的中點,則
GH到平面
ABD的距離是______
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
.(本小題滿分14分)
如圖所示,PA⊥平面ABC,△ABC中BC⊥AC,
(1)求證:BC
平面PAC;
(2)求證:平面PBC
平面PAC
查看答案和解析>>