【題目】如圖,已知直三棱柱中,,,是的中點(diǎn),是上一點(diǎn),且.
(Ⅰ)證明:平面;
(Ⅱ)求三棱錐的體積.
【答案】(Ⅰ)證明見解析;(Ⅱ).
【解析】
(Ⅰ)連接,由三棱柱是直三棱柱,得⊥面,得到,,又在直角三角形中,證得,利用線面垂直的判定定理,即可得到平面;
(Ⅱ)過作,連接,交于點(diǎn),過作,交于點(diǎn),利用線面垂直的判定定理,證得面,得到面,求得,利用體積公式,即可求解。
(Ⅰ)連接,在中,依題意為等腰三角形且,
由面積相等,解得,
由于三棱柱是直三棱柱,故⊥面,
那么.
在直角三角形中,因?yàn)?/span>,
所以,又由,所以,
又因,故為直角,即,
又由,所以得面,所以,
由,
故面.
(Ⅱ)過作,連接,交于點(diǎn),過作,交于點(diǎn),
因?yàn)?/span>面,所以,
又因,所以面,所以面,
又由,所以,
所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究所計(jì)劃利用“神七”宇宙飛船進(jìn)行新產(chǎn)品搭載實(shí)驗(yàn),計(jì)劃搭載新產(chǎn)品A、B,要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實(shí)驗(yàn)費(fèi)用和預(yù)計(jì)產(chǎn)生收益來決定具體安排,通過調(diào)查,有關(guān)數(shù)據(jù)如表:
產(chǎn)品A(件) | 產(chǎn)品B(件) | ||
研制成本與塔載 | 20 | 30 | 計(jì)劃最大資 |
產(chǎn)品重量(千克/件) | 10 | 5 | 最大搭載 |
預(yù)計(jì)收益(萬元/件) | 80 | 60 |
試問:如何安排這兩種產(chǎn)品的件數(shù)進(jìn)行搭載,才能使總預(yù)計(jì)收益達(dá)到最大,最大收益是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時,判斷函數(shù)的單調(diào)性;
(Ⅱ)當(dāng)時,證明:.(為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,并使得它與直角坐標(biāo)系有相同的長度單位,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)曲線與直線交于、兩點(diǎn),且點(diǎn)的坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸為極軸建立極坐標(biāo)系,曲線.
(1)求曲線的直角坐標(biāo)方程和直線的普通方程;
(2)求與直線平行,且被曲線截得的弦長為的直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,M是橢圓C的上頂點(diǎn),,F(xiàn)2是橢圓C的焦點(diǎn),的周長是6.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過動點(diǎn)P(1,t)作直線交橢圓C于A,B兩點(diǎn),且|PA|=|PB|,過P作直線l,使l與直線AB垂直,證明:直線l恒過定點(diǎn),并求此定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過定點(diǎn)且與直線垂直的直線與軸、軸分別交于點(diǎn),點(diǎn)滿足.
(1)若以原點(diǎn)為圓心的圓與有唯一公共點(diǎn),求圓的軌跡方程;
(2)求能覆蓋的最小圓的面積;
(3)在(1)的條件下,點(diǎn)在直線上,圓上總存在兩個不同的點(diǎn)使得為坐標(biāo)原點(diǎn)),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線E:x2=2py(p>0)的焦點(diǎn)為F,點(diǎn)M是直線y=x與拋物線E在第一象限內(nèi)的交點(diǎn),且|MF|=5.
(1)求拋物E的方程.
(2)直線l與拋物線E相交于兩點(diǎn)A,B,過點(diǎn)A,B分別作AA1⊥x軸于A1,BB1⊥x軸于B1,原點(diǎn)O到直線l的距離為1.求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:1(a>b>0)經(jīng)過點(diǎn)(,1),F(0,1)是C的一個焦點(diǎn),過F點(diǎn)的動直線l交橢圓于A,B兩點(diǎn).
(1)求橢圓C的方程
(2)是否存在定點(diǎn)M(異于點(diǎn)F),對任意的動直線l都有kMA+kMB=0,若存在求出點(diǎn)M的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com