【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,并使得它與直角坐標(biāo)系有相同的長(zhǎng)度單位,曲線的極坐標(biāo)方程為

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)設(shè)曲線與直線交于、兩點(diǎn),且點(diǎn)的坐標(biāo)為,求的值.

【答案】(1), (2)9

【解析】試題分析:(1)對(duì)直線的參數(shù)方程消參即可得直線的普通方程,根據(jù)即可得曲線的直角坐標(biāo)方程;(2)將直線方程轉(zhuǎn)化為標(biāo)準(zhǔn)形式的參數(shù)方程代入到曲線的直角坐標(biāo)方程,結(jié)合韋達(dá)定理即可求出的值.

試題解析:(1) , ,

,所以的普通方程是

(2)將直線方程轉(zhuǎn)化為標(biāo)準(zhǔn)形式的參數(shù)方程 為參數(shù)),

代入中得: , .

設(shè), 對(duì)應(yīng)的參數(shù)分別為, ,則,則

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

(1)證明: 圖象恒在直線的上方;

(2)若恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“過(guò)大年,吃水餃”是我國(guó)不少地方過(guò)春節(jié)的一大習(xí)俗,2018年春節(jié)前夕, 市某質(zhì)檢部門(mén)隨機(jī)抽取了100包某種品牌的速凍水餃,檢測(cè)其某項(xiàng)質(zhì)量指標(biāo).

(1)求所抽取的100包速凍水餃該項(xiàng)質(zhì)量指標(biāo)值的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(2)①由直方圖可以認(rèn)為,速凍水餃的該項(xiàng)質(zhì)量指標(biāo)值服從正態(tài)分布,利用該正態(tài)分布,求落在內(nèi)的概率;

②將頻率視為概率,若某人從某超市購(gòu)買(mǎi)了4包這種品牌的速凍水餃,記這4包速凍水餃中這種質(zhì)量指標(biāo)值位于內(nèi)的包數(shù)為,求的分布列和數(shù)學(xué)期望.

附:①計(jì)算得所抽查的這100包速凍水餃的質(zhì)量指標(biāo)的標(biāo)準(zhǔn)差為;

②若,則,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,棱底面,且, , , 的中點(diǎn).

(1)求證: 平面;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,棱底面,且, , , 的中點(diǎn).

(1)求證: 平面;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市縣鄉(xiāng)教師流失現(xiàn)象非常嚴(yán)重,為了縣鄉(xiāng)孩子們能接受良好教育,某市今年要為兩所縣鄉(xiāng)中學(xué)招聘儲(chǔ)備未來(lái)三年的教師,現(xiàn)在每招聘一名教師需要1萬(wàn)元,若三年后教師嚴(yán)重短缺時(shí)再招聘,由于各種因素,則每招聘一名教師需要3萬(wàn)元,已知現(xiàn)在該市縣鄉(xiāng)中學(xué)無(wú)多余教師,為決策應(yīng)招聘多少縣鄉(xiāng)教師搜集并整理了該市50所縣鄉(xiāng)中學(xué)在過(guò)去三年內(nèi)的教師流失數(shù),得到如表的頻率分布表:

流失教師數(shù)

6

7

8

9

頻數(shù)

10

15

15

10

以這50所縣鄉(xiāng)中學(xué)流失教師數(shù)的頻率代替一所縣鄉(xiāng)中學(xué)流失教師數(shù)發(fā)生的概率,記表示兩所縣鄉(xiāng)中學(xué)在過(guò)去三年共流失的教師數(shù), 表示今年為兩所縣鄉(xiāng)中學(xué)招聘的教師數(shù).為保障縣鄉(xiāng)孩子教育不受影響,若未來(lái)三年內(nèi)教師有短缺,則第四年馬上招聘.

(1)求的分布列;

(2)若要求,確定的最小值;

(3)以未來(lái)四年內(nèi)招聘教師所需費(fèi)用的期望值為決策依據(jù),在之中選其一,應(yīng)選用哪個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地戶(hù)家庭的年收入(萬(wàn)元)和年飲食支出 (萬(wàn)元)的統(tǒng)計(jì)資料如下表:

(1)求關(guān)于的線性回歸方程;(結(jié)果保留到小數(shù)點(diǎn)后為數(shù)字)

(2)利用(1)中的回歸方程,分析這戶(hù)家庭的年飲食支出的變化情況,并預(yù)測(cè)該地年收入 萬(wàn)元的家庭的年飲食支出.(結(jié)果保留到小數(shù)點(diǎn)后位數(shù)字)

附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面是直角梯形, , ,

,點(diǎn)在線段上,且, , 平面.

1)求證:平面平面

2)當(dāng)四棱錐的體積最大時(shí),求四棱錐的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 的圖象在處的切線方程為.

(1)求函數(shù)的單調(diào)區(qū)間與極值;

(2)若存在實(shí)數(shù),使得成立,求整數(shù)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案