【題目】下列說法中,正確的是( )
A.“”是“”充分的條件;
B.“”是“”成立的充分不必要條件;
C.命題“已知,是實數(shù),若,則或”為真命題;
D.命題“若,都是正數(shù),則也是正數(shù)”的逆否命題是“若不是正數(shù),則,都不是正數(shù)”.
【答案】C
【解析】
.根據(jù)充分條件的定義加以判斷. .根據(jù)充分必要條件的定義加以判斷. .寫出原命題的逆否命題,根據(jù)互為逆否命題同真假加以判斷;.寫出原命題的逆命題,然后加以判斷;
解:對于:由得不到,故“”是“”的不充分的條件,故錯誤;
對于:由推不出,但是由能夠得到,故“”是“”成立的必要不充分條件,故錯誤;
對于:命題“已知,是實數(shù),若,則或”的逆否命題為“已知,是實數(shù),若且,則”,顯然是真命題,根據(jù)互為逆否命題同真假可知原命題是真的,故正確;
對于:命題“若,都是正數(shù),則也是正數(shù)”的逆否命題是“若不是正數(shù),則,不都是正數(shù)”,故錯誤;
故選:
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,橢圓C過點,焦點,圓O的直徑為.
(1)求橢圓C及圓O的方程;
(2)設(shè)直線l與圓O相切于第一象限內(nèi)的點P.
①若直線l與橢圓C有且只有一個公共點,求點P的坐標;
②直線l與橢圓C交于兩點.若的面積為,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為征求個人所得稅法修改建議,某機構(gòu)對當(dāng)?shù)鼐用竦脑率杖胝{(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(每個分組包括左端點,不包括右端點,如第一組表示收入在[1000,1500)).
(1)求居民月收入在的頻率;
(2)根據(jù)頻率分布直方圖估算樣本數(shù)據(jù)的中位數(shù);
(3)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這10000人中用分層抽樣方法抽出100人作進一步分析,則月收入在的這段應(yīng)抽多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】邗江中學(xué)高二年級某班某小組共10人,利用寒假參加義工活動,已知參加義工活動次數(shù)為1,2,3的人數(shù)分別為3,3,4.現(xiàn)從這10人中選出2人作為該組代表參加座談會.
(1)記“選出2人參加義工活動的次數(shù)之和為4”為事件,求事件發(fā)生的概率;
(2)設(shè)為選出2人參加義工活動次數(shù)之差的絕對值,求隨機變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,過點P(0,1)且互相垂直的兩條直線分別與圓O:交于點A,B,與圓M:(x﹣2)2+(y﹣1)2=1交于點C,D.
(1)若AB=,求CD的長;
(2)若CD中點為E,求△ABE面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
當(dāng)時,討論函數(shù)的單調(diào)性;
求函數(shù)在區(qū)間上零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,的棱長為1的正方體,任作平面與對角線垂直,使得與正方體的每個面都有公共點,這樣得到的截面多邊形的面積為,周長為的范圍分別是_____________(用集合表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某單位全體員工年齡頻率分布表,經(jīng)統(tǒng)計,該單位35歲以下的青年職工中,男職工和女職工人數(shù)相等,且男職工的年齡頻率分布直方圖和如下:
年齡(歲) | [25,30) | [30,35) | [35,40) | [40,45) | [45,50) | [50,55) | 合計 |
人數(shù)(人) | 6 | 18 | 50 | 31 | 19 | 16 | 140 |
(Ⅰ)求;
(Ⅱ)求該單位男女職工的比例;
(Ⅲ)若從年齡在[25,30)歲的職工中隨機抽取兩人參加某項活動,求恰好抽取一名男職工和一名女職工的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com