分析 (Ⅰ)由題意可知:兩式相減2an=(n+1)an-nan-1,則$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n}{n-1}$,采用“累乘法”即可求得數列{an},bn=2${\;}^{{a}_{n}+1}$=2n+1;
(Ⅱ)由(Ⅰ)可知:$\frac{1}{{a}_{n}•(lo{g}_{2}_{n})}$=$\frac{1}{n}$-$\frac{1}{n+1}$,即可求得Tn.
解答 解:(Ⅰ)當n≥2時,由2Sn=(n+1)an,則2Sn-1=nan-1,
兩式相減得:2an=(n+1)an-nan-1,整理得:$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n}{n-1}$,
由an=$\frac{{a}_{n}}{{a}_{n-1}}$•$\frac{{a}_{n-1}}{{a}_{n-2}}$•…•$\frac{{a}_{2}}{{a}_{1}}$=$\frac{n}{n-1}$•$\frac{n-1}{n-2}$•…•$\frac{2}{1}$•1=n,(n≥2),
當n=1時,a1=1,
∴an=n,(n∈N*);
由bn=2${\;}^{{a}_{n}+1}$=2n+1.
∴{bn}的通項公式bn=2n+1;
(Ⅱ)由(Ⅰ),$\frac{1}{{a}_{n}•(lo{g}_{2}_{n})}$=$\frac{1}{n(lo{g}_{2}{2}^{n+1})}$,
=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
由數列{$\frac{1}{{a}_{n}•(lo{g}_{2}_{n})}$}的前n項和Tn,Tn=(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+…+($\frac{1}{n}$-$\frac{1}{n+1}$),
=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$,
=1-$\frac{1}{n+1}$,
=$\frac{n}{n+1}$.
數列{$\frac{1}{{a}_{n}•(lo{g}_{2}_{n})}$}的前n項和Tn=$\frac{n}{n+1}$.
點評 本題考查數列的前n項和求法,考查“裂項法”,“累乘法”,考查計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 第一象限角 | B. | 第二象限角 | C. | 第三象限角 | D. | 第四象限角 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 平面ACB′∥平面A′C′D | B. | B′C⊥BD′ | ||
C. | B′C⊥DC′ | D. | BD′⊥平面A′C′D |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{5}$ | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | 2 | C. | $\sqrt{3}$ | D. | $\frac{\sqrt{5}}{2}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com