已知點P是橢圓上一點,F(xiàn)1,F(xiàn)2分別為橢圓的左、右焦點,M為△PF1F2的內(nèi)心,若=-成立,則λ的值為                ( )
A.
B.
C.
D.
【答案】分析:設(shè)出內(nèi)接圓半徑,把已知面積關(guān)系式,移項,利用橢圓的定義,即可求出λ的值.
解答:解:設(shè)內(nèi)接圓的半徑為r,因為=-,
所以+=;
又橢圓的定義可知|PF1|+|PF2|=2a,|F1F2|=2c,
所以ar=λcr,c=,
∴λ=
故選A.
點評:本題考查橢圓的定義,橢圓的基本性質(zhì)的應(yīng)用,考查分析問題解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點P是橢圓上一點,F(xiàn)1F2分別為橢圓的左、右焦點,M為△PF1F2的內(nèi)心,若S△MPF1=λS△MF1F2-S△MPF2成立,則λ的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省紹興一中2012屆高三上學(xué)期期中考試數(shù)學(xué)理科試題 題型:013

已知點P是橢圓上一點,F(xiàn)1,F(xiàn)2分別為橢圓的左、右焦點,M為△PF1F2的內(nèi)心,若成立,則λ的值為

[  ]
A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點P是橢圓上一點,F(xiàn)1F2分別為橢圓的左、右焦點,M為△PF1F2的內(nèi)心,若S△MPF1=λS△MF1F2-S△MPF2成立,則λ的值為( 。
A.
α
α2-b2
B.
α2-b2
C.
α2-b2
α
D.
α2-b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年湖南省高考數(shù)學(xué)考前沖刺試卷(解析版) 題型:解答題

已知點P是橢圓上一點,F(xiàn)1、F2分別是橢圓的左、右焦點,點Q在F1P上,且|PQ|=|PF2|,則Q點坐標(biāo)為   

查看答案和解析>>

同步練習(xí)冊答案