分析 (I)3an=2Sn+3,∴利用遞推關(guān)系與等比數(shù)列的通項公式即可得出an.利用等差數(shù)列的通項公式與求和公式即可得出bn.
(II)cn=$\frac{{{a}_{n}b}_{n}}{n(n+1)}$=$\frac{{3}^{n}(2n-1)}{n(n+1)}$=$\frac{{3}^{n}[3n-(n+1)]}{n(n+1)}$=$\frac{{3}^{n+1}}{n+1}$-$\frac{{3}^{n}}{n}$,利用“裂項求和”方法即可得出.
解答 解:(I)∵3an=2Sn+3,∴n≥2時,3an-1=2Sn-1+3,
相減可得:3an-3an-1=2an,化為:an=3an-1,
n=1時,可得3a1=2a1+3,解得a1=3.
∴數(shù)列{an}是等比數(shù)列,首項與公比都為3.
∴an=3n.
設(shè)等差數(shù)列{bn}的公差為d,∵T5=25,b10=19.
∴5b1+$\frac{5×4}{2}$×d=25,b1+9d=19,
聯(lián)立解得:b1=1,d=2.
∴bn=1+2(n-1)=2n-1.
(II)cn=$\frac{{{a}_{n}b}_{n}}{n(n+1)}$=$\frac{{3}^{n}(2n-1)}{n(n+1)}$=$\frac{{3}^{n}[3n-(n+1)]}{n(n+1)}$=$\frac{{3}^{n+1}}{n+1}$-$\frac{{3}^{n}}{n}$,
∴數(shù)列{cn}的前n項和Rn=$(\frac{{3}^{2}}{2}-\frac{3}{1})$+$(\frac{{3}^{3}}{3}-\frac{{3}^{2}}{2})$+…+$(\frac{{3}^{n+1}}{n+1}-\frac{{3}^{n}}{n})$=$\frac{{3}^{n+1}}{n+1}$-3.
點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式與求和公式及其性質(zhì)、裂項求和、數(shù)列的遞推關(guān)系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2+(y-3)2=5 | B. | x2+(y+3)2=5 | C. | (x-3)2+y2=5 | D. | (x+3)2+y2=5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i | B. | -i | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,$\sqrt{3}$] | B. | (1,$\frac{3}{2}$] | C. | [$\frac{3}{2}$,+∞) | D. | (3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 48 | B. | 36 | C. | 30 | D. | 24 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com