4.設(shè)Sn,Tn分別是數(shù)列{an}和{bn}的前n項和,已知對于任意n∈N*,都有3an=2Sn+3,數(shù)列{bn}是等差數(shù)列,且T5=25,b10=19.
(Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)設(shè)cn=$\frac{{{a}_{n}b}_{n}}{n(n+1)}$,求數(shù)列{cn}的前n項和Rn

分析 (I)3an=2Sn+3,∴利用遞推關(guān)系與等比數(shù)列的通項公式即可得出an.利用等差數(shù)列的通項公式與求和公式即可得出bn
(II)cn=$\frac{{{a}_{n}b}_{n}}{n(n+1)}$=$\frac{{3}^{n}(2n-1)}{n(n+1)}$=$\frac{{3}^{n}[3n-(n+1)]}{n(n+1)}$=$\frac{{3}^{n+1}}{n+1}$-$\frac{{3}^{n}}{n}$,利用“裂項求和”方法即可得出.

解答 解:(I)∵3an=2Sn+3,∴n≥2時,3an-1=2Sn-1+3,
相減可得:3an-3an-1=2an,化為:an=3an-1,
n=1時,可得3a1=2a1+3,解得a1=3.
∴數(shù)列{an}是等比數(shù)列,首項與公比都為3.
∴an=3n
設(shè)等差數(shù)列{bn}的公差為d,∵T5=25,b10=19.
∴5b1+$\frac{5×4}{2}$×d=25,b1+9d=19,
聯(lián)立解得:b1=1,d=2.
∴bn=1+2(n-1)=2n-1.
(II)cn=$\frac{{{a}_{n}b}_{n}}{n(n+1)}$=$\frac{{3}^{n}(2n-1)}{n(n+1)}$=$\frac{{3}^{n}[3n-(n+1)]}{n(n+1)}$=$\frac{{3}^{n+1}}{n+1}$-$\frac{{3}^{n}}{n}$,
∴數(shù)列{cn}的前n項和Rn=$(\frac{{3}^{2}}{2}-\frac{3}{1})$+$(\frac{{3}^{3}}{3}-\frac{{3}^{2}}{2})$+…+$(\frac{{3}^{n+1}}{n+1}-\frac{{3}^{n}}{n})$=$\frac{{3}^{n+1}}{n+1}$-3.

點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式與求和公式及其性質(zhì)、裂項求和、數(shù)列的遞推關(guān)系,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知點A是直角三角形ABC的直角頂點,且A(2a,2),B(-4,a),C(2a+2,2),則△ABC的外接圓的方程是(  )
A.x2+(y-3)2=5B.x2+(y+3)2=5C.(x-3)2+y2=5D.(x+3)2+y2=5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.復(fù)數(shù)$\frac{1}{1-i}$+$\frac{1}{1+i}$=( 。
A.iB.-iC.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.某人隨機播放甲、乙、丙、丁4首歌曲中的2首,則甲、乙2首歌曲至少有1首被播放的概率是$\frac{5}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦點在直線l:$\sqrt{3}$x-y-3=0上,且橢圓上任意兩個關(guān)于原點對稱的點與橢圓上任意一點的連線的斜率之積為-$\frac{1}{4}$.
(1)求橢圓C的方程;
(2)若直線t經(jīng)過點P(1,0),且與橢圓C有兩個交點A,B,是否存在直線l0:x=x0(其中x0>2)使得A,B到l0的距離dA,dB滿足$\frac{d_A}{d_B}=\frac{{|{PA}|}}{{|{PB}|}}$恒成立?若存在,求出x0的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知拋物線C1:y2=2px(p>0)的焦點為橢圓C2:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1({a>b>0})的右焦點,且兩曲線有公共點($\frac{2}{3}$,$\frac{{2\sqrt{6}}}{3}}$)
(1)求拋物線C1與橢圓C2的方程;
(2)若橢圓C2的一條切線l與拋物線C1交于A,B兩點,且OA⊥OB,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點分別為F1,F(xiàn)2,點P在雙曲線的右支上,且|PF1|=5|PF2|,則此雙曲線的離心率的取值范圍是( 。
A.(1,$\sqrt{3}$]B.(1,$\frac{3}{2}$]C.[$\frac{3}{2}$,+∞)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某校高三特長班的一次月考數(shù)學(xué)成績的莖葉圖和頻率分布直方圖1都受到不同程度的損壞,但可見部分如圖2,據(jù)此解答如下問題:

(Ⅰ)求分數(shù)在[70,80)之間的頻數(shù),并計算頻率分布直方圖中[70,80)間的矩形的高;
(Ⅱ)若要從分數(shù)在[50,70)之間的試卷中任取兩份分析學(xué)生失分情況,在抽取的試卷中,求至少有一份在[50,60)之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.公元263年左右,我國古代數(shù)學(xué)家劉徽用圓內(nèi)接正多邊形的面積去逼近圓的面積求圓周率π,劉徽稱這個方法為“割圓術(shù)”,并且把“割圓術(shù)”的特點概括為“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”下圖是根據(jù)劉徽的“割圓術(shù)”思想設(shè)計的一個程序框圖.若運行該程序,則輸出的n的值為:(參考數(shù)據(jù):$\sqrt{3}$≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)( 。
A.48B.36C.30D.24

查看答案和解析>>

同步練習(xí)冊答案