(2012•濟(jì)南三模)已知x∈R,那么x2>1是x>1的( 。
分析:本題考查的判斷充要條件的方法,我們可以根據(jù)充要條件的定義進(jìn)行判斷,此題的關(guān)鍵是數(shù)的大小比較與其平方大小比較的關(guān)系.
解答:解:因?yàn)閤2>1,所以x>1或x<-1,所以x2>1是x>1的不充分條件,由x>1,可得x2>1,所以x2>1是x>1的必要條件.
故選A
點(diǎn)評(píng):判斷充要條件的方法是:
①若p⇒q為真命題且q⇒p為假命題,則命題p是命題q的充分不必要條件;
②若p⇒q為假命題且q⇒p為真命題,則命題p是命題q的必要不充分條件;
③若p⇒q為真命題且q⇒p為真命題,則命題p是命題q的充要條件;
④若p⇒q為假命題且q⇒p為假命題,則命題p是命題q的即不充分也不必要條件.
⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰(shuí)大誰(shuí)必要,誰(shuí)小誰(shuí)充分”的原則,判斷命題p與命題q的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•濟(jì)南三模)經(jīng)市場(chǎng)調(diào)查,某旅游城市在過去的一個(gè)月內(nèi)(以30天計(jì)),第t天(1≤t≤30,t∈N﹢)的旅游人數(shù)f(t) (萬(wàn)人)近似地滿足f(t)=4+
1t
,而人均消費(fèi)g(t)(元)近似地滿足g(t)=120-|t-20|.
(1)求該城市的旅游日收益w(t)(萬(wàn)元)與時(shí)間t(1≤t≤30,t∈N)的函數(shù)關(guān)系式;
(2)求該城市旅游日收益的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•濟(jì)南三模)某旅游景點(diǎn)預(yù)計(jì)2013年1月份起前x個(gè)月的旅游人數(shù)的和p(x)(單位:萬(wàn)人)與x的關(guān)系近似地滿足p(x)=
1
2
x(x+1)•(39-2x),(x∈N*,且x≤12).已知第x月的人均消費(fèi)額q(x)(單位:元)與x的近似關(guān)系是q(x)=
35-2x(x∈N*,且1≤x≤6)
160
x
(x∈N*,且7≤x≤12)

(I)寫出2013年第x月的旅游人數(shù)f(x)(單位:人)與x的函數(shù)關(guān)系式;
(II)試問2013年第幾月旅游消費(fèi)總額最大,最大月旅游消費(fèi)總額為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•濟(jì)南三模)如圖所示,PA⊥平面ABCD,四邊形ABCD為正方形,且2PA=AD,E、F、G、H分別是線段PA、PD、CD、BC的中點(diǎn).
(Ⅰ)求證:BC∥平面EFG;
(Ⅱ)求證:DH⊥平面AEG;
(Ⅲ)求三棱錐E-AFG與四棱錐P-ABCD的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•濟(jì)南三模)已知直線l:y=x+1,圓O:x2+y2=
3
2
,直線l被圓截得的弦長(zhǎng)與橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的短軸長(zhǎng)相等,橢圓的離心率e=
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)M(0,-
1
3
)的動(dòng)直線l交橢圓C于A、B兩點(diǎn),試問:在坐標(biāo)平面上是否存在一個(gè)定點(diǎn)T,使得無(wú)論l如何轉(zhuǎn)動(dòng),以AB為直徑的圓恒過定點(diǎn)T?若存在,求出點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•濟(jì)南三模)設(shè)函數(shù)f(x)=x2-2(-1)klnx(k∈N*),f(x)表示f(x)導(dǎo)函數(shù).
(I)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)k為偶數(shù)時(shí),數(shù)列{an}滿足a1=1,anf(an)
=a
2
n+1
-3
.證明:數(shù)列{
a
2
n
}中不存在成等差數(shù)列的三項(xiàng);
(Ⅲ)當(dāng)k為奇數(shù)時(shí),設(shè)bn=
1
2
f
(n)-n
,數(shù)列{bn}的前n項(xiàng)和為Sn,證明不等式(1+bn)
1
bn+1
e對(duì)一切正整數(shù)n均成立,并比較S2012-1與ln2012的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案