在△ABC中,內(nèi)角A,B,C對邊的邊長分別是a,b,c,已知c=2,角C=60°
(1)若△ABC的面積是
3
,求a,b 的值;
(2)若 sinC+sin(B-A)=2sin2A,求a:b的值.
分析:(1)先通過余弦定理求出a,b的關(guān)系式;再通過正弦定理及三角形的面積求出a,b的另一關(guān)系式,最后聯(lián)立方程求出a,b的值.
(2)通過C=π-(A+B)及二倍角公式及sinC+sin(B-A)=2sin2A,求出∴sinBcosA=2sinAcosA.當(dāng)cosA=0時(shí)求出a,b的值進(jìn)而求出結(jié)果;當(dāng)cosA≠0時(shí),由正弦定理得b=2a,即可求出結(jié)果.
解答:解:(1)∵c=2,C=
π
3
,c2=a2+b2-2abcosC
∴a2+b2-ab=4,
又∵△ABC的面積等于
3

1
2
absinC=
3
,
∴ab=4
聯(lián)立方程組
a2+b2-ab=4
ab=4
,解得a=2,b=2
(2)∵sinC+sin(B-A)=sin(B+A)+sin(B-A)=2sin2A=4sinAcosA,
∴sinBcosA=2sinAcosA
當(dāng)cosA=0時(shí),A=
π
2
,B=
π
6
a=
4
3
3
,b=
2
3
3

∴a:b=2
當(dāng)cosA≠0時(shí),得sinB=2sinA,由正弦定理得b=2a,
∴a:b=
1
2

綜上知a:b=2或
1
2
…(14分)
點(diǎn)評:本小題主要考查三角形的邊角關(guān)系,三角函數(shù)公式等基礎(chǔ)知識(shí),考查綜合應(yīng)用三角函數(shù)有關(guān)知識(shí)的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•天津)在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c,已知a=2,c=
2
,cosA=-
2
4

(1)求sinC和b的值;
(2)求cos(2A+
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A、B、C所對邊長分別為a、b、c,已知a2-c2=b,且sinAcosC=3cosAsinC,則b=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且a,b是方程x2-2
3
x+2=0的兩根,2cos(A+B)=1,則△ABC的面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c.已知A=45°,a=6,b=3
2
,則B的大小為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c,已知B=60°,不等式x2-4x+1<0的解集為{x|a<x<c},則b=
13
13

查看答案和解析>>

同步練習(xí)冊答案