1.已知數(shù)列{an}的前n項和為Sn,且a1=1,an+1=Sn+2,則滿足$\frac{S_n}{{{S_{2n}}}}<\frac{1}{10}$的n的最小值為( 。
A.4B.5C.6D.7

分析 把已知數(shù)列遞推式變形為Sn+1=2Sn+2,構(gòu)造出數(shù)列{Sn+2}是以3為首項,以2為公比的等比數(shù)列,求得Sn,代入$\frac{S_n}{{{S_{2n}}}}<\frac{1}{10}$得答案.

解答 解:由an+1=Sn+2,得Sn+1-Sn=Sn+2,
∴Sn+1=2Sn+2,則Sn+1+2=2(Sn+2),
∵S1+2=a1+2=3,
∴數(shù)列{Sn+2}構(gòu)成以3為首項,以2為公比的等比數(shù)列,
則${S}_{n}+2=3•{2}^{n-1}$,即${S}_{n}=3•{2}^{n-1}-2$
由$\frac{S_n}{{{S_{2n}}}}<\frac{1}{10}$,得$\frac{3•{2}^{n-1}-2}{3•{2}^{2n-1}-2}$<$\frac{1}{10}$,得22n-10•2n+12>0,
解得:${2}^{n}<5-\sqrt{13}$(舍),或${2}^{n}>5+\sqrt{13}$.
∴n的最小值為4.
故選:A.

點(diǎn)評 本題考查數(shù)列遞推式,考查了等比關(guān)系的確定,訓(xùn)練了等比數(shù)列通項公式的求法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.下列說法:
①若f(x)=ax2+(2a+b)x+2(其中x∈[-1,a])是偶函數(shù),則實(shí)數(shù)b=-2;
②f(x)=$\sqrt{2016-{x^2}}$+$\sqrt{{x^2}-2016}$既是奇函數(shù)又是偶函數(shù);
③若f(x+2)=$\frac{1}{f(x)}$,當(dāng)x∈(0,2)時,f(x)=2x,則f(2015)=2;
④已知f(x)是定義在R上的不恒為零的函數(shù),且對任意的x,y∈R都滿足f(xy)=xf(y)+yf(x),則f(x)是奇函數(shù).其中所有正確命題的序號是①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在銳角三角形ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且2csinA=$\sqrt{3}$a.
(1)求角C的大;
(2)若c=2,a2+b2=6,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知x>0,y>0,$\frac{1}{x}$+$\frac{9}{y}$=1,不等式x+y≥2m-1恒成立,則m的取值范圍( 。
A.(-∞,$\frac{7}{2}$]B.(-∞,$\frac{13}{2}$]C.(-∞,$\frac{15}{2}$]D.(-∞,$\frac{17}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某農(nóng)戶建造一座占地面積為36m2的背面靠墻的矩形簡易雞舍,由于地理位置的限制,雞舍側(cè)面的長度x不得超過7m,墻高為2m,雞舍正面的造價為40元/m2,雞舍側(cè)面的造價為20元/m2,地面及其他費(fèi)用合計為1800元.
(1)把雞舍總造價y表示成x的函數(shù),并寫出該函數(shù)的定義域.
(2)當(dāng)側(cè)面的長度為多少時,總造價最低?最低總造價是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)集合A={x|-1≤x≤2},B={x|x2-x+(m-m2)<0}.
(1)當(dāng)m<$\frac{1}{2}$時,化簡集合B;
(2)p:x∈A,命題q:x∈B,且命題p是命題q的必要不充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(λ,-1),若$\overrightarrow a$⊥$\overrightarrow b$,則|$\overrightarrow a$+$\overrightarrow b$|=( 。
A.$\sqrt{10}$B.4C.$\sqrt{17}$D.$2\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知tanα=-2,則$\frac{sin2α-co{s}^{2}α}{si{n}^{2}α}$=-$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,已知點(diǎn)C是以AB為直徑的圓O上一點(diǎn),CG垂直于AB,垂足為G,過B點(diǎn)做圓O的切線,交直線AC于點(diǎn)D,點(diǎn)E是CG的中點(diǎn),連接并延長AE交BD于點(diǎn)F,求證:
(1)AE•DF=CE•AF;
(2)CF是圓O的切線.

查看答案和解析>>

同步練習(xí)冊答案