【題目】已知A(0,0),B(1,0),C(2,1),D(0,3),將四邊形ABCDy軸旋轉(zhuǎn)一周,求所得旋轉(zhuǎn)體的表面積和體積.

【答案】

【解析】試題分析:由題可知,該旋轉(zhuǎn)體是一個圓錐和一個圓臺的組合體,則表面積為圓錐側(cè)面積加上圓臺側(cè)面積加上圓的面積,體積為圓錐體積加上圓臺體積。

試題解析:

Cy軸的垂線交y軸于E,則三角形DCE是直角三角形,四邊形ABCE是直角梯形,四邊形ABCDy軸旋轉(zhuǎn)一周所得幾何體是一個圓錐和一個圓臺的組合體,易求得AB=1,BC,CE=2,AE=1,ED=2,DC=2,

所得旋轉(zhuǎn)體的表面積是

S=π×12+π(1+2)×+π×2×2=(7+1)π,

體積為V×π×4×2+ (1+2+4)×1=5π.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ﹣k( +lnx),若x=2是函數(shù)f(x)的唯一一個極值點,則實數(shù)k的取值范圍為(
A.(﹣∞,e]
B.[0,e]
C.(﹣∞,e)
D.[0,e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017·北京高考)由四棱柱ABCDA1B1C1D1截去三棱錐C1B1CD1后得到的幾何體如圖所示.四邊形ABCD為正方形,OACBD的交點,EAD的中點,A1E⊥平面ABCD.

(1)證明:A1O∥平面B1CD1;

(2)設(shè)MOD的中點,證明:平面A1EM⊥平面B1CD1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,BCDC,AEDCM,N分別是AD,BE的中點,將三角形ADE沿AE折起,則下列說法正確的是________(填序號).

①不論D折至何位置(不在平面ABC內(nèi)),都有MN∥平面DEC;②不論D折至何位置,都有MNAE;③不論D折至何位置(不在平面ABC內(nèi)),都有MNAB;④在折起過程中,一定存在某個位置,使ECAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD∠ABC=60°,PA=AB=BC,

EPC的中點.求證:

CD⊥AE;

PD⊥平面ABE

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= x2﹣alnx(a∈R)
(1)若函數(shù)f(x)在x=2處的切線方程為y=x+b,求a,b的值;
(2)討論方程f(x)=0解的個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐PABCD中,PA⊥底面ABCD,ADBC,ABADAC=3,PABC=4,M為線段AD上一點,AM=2MD,NPC的中點.

(1)證明MN∥平面PAB;

(2)求四面體NBCM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐S﹣ABCD中,AB∥CD,BC⊥CD,側(cè)面SAB為等邊三角形.AB=BC=2,CD=SD=1.
(1)證明:SD⊥平面SAB
(2)求AB與平面SBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy 中,已知圓C的參數(shù)方程為 (φ為參數(shù)).以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系.
(1)求圓的極坐標(biāo)方程;
(2)直線l的極坐方程是 ,射線OM:θ= 與圓的交點為O,P,與直線l的交點為Q,求線段PQ的長.

查看答案和解析>>

同步練習(xí)冊答案