【題目】隨著共享單車(chē)的成功運(yùn)營(yíng),更多的共享產(chǎn)品逐步走入大家的世界,共享汽車(chē)、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮.廣元某景點(diǎn)設(shè)有共享電動(dòng)車(chē)租車(chē)點(diǎn),共享電動(dòng)車(chē)的收費(fèi)標(biāo)準(zhǔn)是每小時(shí)2元(不足1小時(shí)的部分按1小時(shí)計(jì)算).甲、乙兩人各租一輛電動(dòng)車(chē),若甲、乙不超過(guò)一小時(shí)還車(chē)的概率分別為;一小時(shí)以上且不超過(guò)兩小時(shí)還車(chē)的概率分別為;兩人租車(chē)時(shí)間都不會(huì)超過(guò)三小時(shí).

1)求甲、乙兩人所付租車(chē)費(fèi)用相同的概率;

2)求甲、乙兩人所付的租車(chē)費(fèi)用之和大于或等于8的概率.

【答案】1;(2

【解析】

1)甲、乙兩人所付費(fèi)用相同即同為2,46元,都付2元的概率,都付4元的概率,都付6元的概率,由此利用互斥事件概率加法公式能求出所付費(fèi)用相同的概率.

2)設(shè)兩人費(fèi)用之和8、10、12的事件分別為、, , ,設(shè)兩人費(fèi)用之和大于或等于8的事件為,則,由此能求出兩人費(fèi)用之和大于或等于8的概率.

解:(1)甲、乙兩人所付費(fèi)用相同即同為2,4,6.

都付2元的概率為;

都付4元的概率為

都付6元的概率為;

故所付費(fèi)用相同的概率為.

2)設(shè)兩人費(fèi)用之和為810、12的事件分別為、

;.

設(shè)兩人費(fèi)用之和大于或等于8的事件為,則

所以,兩人費(fèi)用之和大于或等于8的概率

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知底面為邊長(zhǎng)為的正方形,側(cè)棱長(zhǎng)為的直四棱柱中,是上底面上的動(dòng)點(diǎn).給出以下四個(gè)結(jié)論中,正確的個(gè)數(shù)是(

①與點(diǎn)距離為的點(diǎn)形成一條曲線,則該曲線的長(zhǎng)度是;

②若,則與面所成角的正切值取值范圍是;

③若,則在該四棱柱六個(gè)面上的正投影長(zhǎng)度之和的最大值為.

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線方程為.

1)求的值;

2)證明函數(shù)存在唯一的極大值點(diǎn),且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】海面上漂浮著、、、七個(gè)島嶼,島與島之間都沒(méi)有橋連接,小昊住在島,小皓住在.現(xiàn)政府計(jì)劃在這七個(gè)島之間建造座橋(每?jī)蓚(gè)島之間至多建造一座橋).,則橋建完后,小吳和小皓可以往來(lái)的概率為______;若,則橋建完后,小昊和小皓可以往來(lái)的概率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,,,,上一點(diǎn),且.

1)求證:平面平面.

2上一點(diǎn),當(dāng)為何值時(shí),平面?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)理科成績(jī)優(yōu)異,今年參加了數(shù)學(xué),物理,化學(xué),生物4門(mén)學(xué)科競(jìng)賽.已知該同學(xué)數(shù)學(xué)獲一等獎(jiǎng)的概率為,物理,化學(xué),生物獲一等獎(jiǎng)的概率都是,且四門(mén)學(xué)科是否獲一等獎(jiǎng)相互獨(dú)立.

(1)求該同學(xué)至多有一門(mén)學(xué)科獲得一等獎(jiǎng)的概率;

(2)用隨機(jī)變量表示該同學(xué)獲得一等獎(jiǎng)的總數(shù),求的概率分布和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱柱中,底面為菱形,.

1)證明:平面平面;

2)若是等邊三角形,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】劉徽(約公元225-295),魏晉期間偉大的數(shù)學(xué)家,中國(guó)古典數(shù)學(xué)理論的奠基人之一他在割圓術(shù)中提出的,“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無(wú)所失矣,這可視為中國(guó)古代極限觀念的佳作,割圓術(shù)的核心思想是將一個(gè)圓的內(nèi)接正n邊形等分成n個(gè)等腰三角形(如圖所示),當(dāng)n變得很大時(shí),這n個(gè)等腰三角形的面積之和近似等于圓的面積,運(yùn)用割圓術(shù)的思想,得到的近似值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題:關(guān)于的不等式無(wú)解;命題:指數(shù)函數(shù)上的增函數(shù).

(1)若命題為真命題,求實(shí)數(shù)的取值范圍;

(2)若滿足為假命題且為真命題的實(shí)數(shù)取值范圍是集合,集合,且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案