8.已知焦點在x軸上的橢圓過點A(-3,0),且離心率e=$\frac{{\sqrt{5}}}{3}$,則橢圓的標(biāo)準(zhǔn)方程是(  )
A.$\frac{x^2}{9}+\frac{y^2}{{\frac{81}{4}}}$=1B.$\frac{x^2}{4}+\frac{y^2}{9}$=1C.$\frac{x^2}{{\frac{81}{4}}}+\frac{y^2}{9}$=1D.$\frac{x^2}{9}+\frac{y^2}{4}$=1

分析 設(shè)橢圓的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),由題意可得a=3,由離心率公式和a,b,c的關(guān)系,可得b,進(jìn)而得到橢圓方程.

解答 解:設(shè)橢圓的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),
由題意可得a=3,e=$\frac{c}{a}$=$\frac{\sqrt{5}}{3}$,
可得c=$\sqrt{5}$,b=$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{9-5}$=2,
則橢圓方程為$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1.
故選:D.

點評 本題考查橢圓的方程的求法,注意運(yùn)用橢圓的性質(zhì)及離心率公式和a,b,c的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.一個樣本的數(shù)據(jù)在60左右波動,各個數(shù)據(jù)都減去60后得到一組新數(shù)據(jù),算得其平均數(shù)是6,則這個樣本的平均數(shù)是( 。
A.6.6B.6C.66D.60

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知點M(-$\sqrt{3}$,0),N($\sqrt{3}$,0),若橢圓C:$\frac{{x}^{2}}{a}$+y2=1存在點P使|PM|-|PN|=2$\sqrt{2}$,則a的取值范圍是( 。
A.(0,1)B.(1,+∞)C.[2,+∞)D.[$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)$f(x)=2\sqrt{3}sin(3ωx+\frac{π}{3})\;(ω>0)$,若f(x+θ)是周期為2π的偶函數(shù),則θ的一個可能值是( 。
A.$\frac{4}{3}π$B.$\frac{7}{6}π$C.πD.$\frac{5}{6}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.將${({1-\frac{1}{x^2}})^n}(n∈{N_+})$的展開式中x-4的系數(shù)記為an,則$\frac{1}{a_2}+\frac{1}{a_3}+…+\frac{1}{{{a_{2016}}}}$等于(  )
A.$\frac{2015}{2016}$B.$\frac{2015}{1008}$C.2015D.2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知橢圓$\frac{{x}^{2}}{49}$+$\frac{{y}^{2}}{24}$=1的左、右焦點分別為F1、F2,點A在橢圓上,且|AF2|=6,則△AF1F2的面積是( 。
A.48B.40C.32D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖給出的是計算$\frac{1}{2}+\frac{1}{4}+…+\frac{1}{2016}$的值的一個程序框圖,則圖中判斷框內(nèi)(1)處和執(zhí)行框中的(2)處應(yīng)填的語句是( 。
A.i>1008,n=n+2B.i≤1008,n=n+2C.i>2016,n=n+1D.i>2016,n=n+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}滿足:a1=1,公差d>0,該數(shù)列的前三項分別加上1,1,3后順次成為等比數(shù)列{bn}的前三項
(Ⅰ)求數(shù)列{an},{bn}的通項公式
(Ⅱ)設(shè)cn=$\frac{{a}_{n}}{_{n}}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=sin(2x+φ)+cos(2x+φ)的圖象與函數(shù)$g(x)=\sqrt{2}sin({2x+\frac{π}{3}})$的圖象關(guān)于y軸對稱,則φ的值可以為( 。
A.$-\frac{7π}{12}$B.$-\frac{5π}{12}$C.$\frac{5π}{12}$D.$\frac{7π}{12}$

查看答案和解析>>

同步練習(xí)冊答案