A. | 48 | B. | 40 | C. | 32 | D. | 24 |
分析 求出橢圓的a,b,c,e,以及右準(zhǔn)線方程,運用橢圓的第二定義,可得A的橫坐標(biāo),求得縱坐標(biāo),再由三角形的面積公式,計算即可得到所求值.
解答 解:橢圓$\frac{{x}^{2}}{49}$+$\frac{{y}^{2}}{24}$=1中a=7,b=2$\sqrt{6}$,c=$\sqrt{49-24}$=5,
e=$\frac{c}{a}$=$\frac{5}{7}$,右準(zhǔn)線方程為x=$\frac{49}{5}$,
|AF2|=ed=e($\frac{{a}^{2}}{c}$-xA)=a-exA=6,
即為7-$\frac{5}{7}$xA=6,可得xA=$\frac{7}{5}$,
yA=±$\sqrt{24(1-\frac{1}{25})}$=±$\frac{24}{5}$,
則△AF1F2的面積是$\frac{1}{2}$•2c•|yA|
=5•$\frac{24}{5}$=24.
故選:D.
點評 本題考查橢圓的方程和性質(zhì),考查焦半徑公式的運用,以及三角形的面積的求法,考查運算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{9}+\frac{y^2}{{\frac{81}{4}}}$=1 | B. | $\frac{x^2}{4}+\frac{y^2}{9}$=1 | C. | $\frac{x^2}{{\frac{81}{4}}}+\frac{y^2}{9}$=1 | D. | $\frac{x^2}{9}+\frac{y^2}{4}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com