【題目】已知方程.
(1)設(shè),方程有三個(gè)不同實(shí)根,求的取值范圍;
(2)求證:是方程有三個(gè)不同實(shí)根的必要不充分條件.
【答案】(1) ;(2)見解析.
【解析】
試題(1)三次函數(shù)有三個(gè)零點(diǎn),等價(jià)于零在極大值與極小值之間,因此本題實(shí)質(zhì)先求函數(shù)極值,再解不等式, (2)證明不充分,只需舉一個(gè)反例即可;證明必要性,可說明時(shí)方程沒有三個(gè)不同實(shí)根.
試題解析:設(shè).
(1)當(dāng)時(shí),方程有三個(gè)不同實(shí)根,
等價(jià)于函數(shù)有三個(gè)不同零點(diǎn),
,令得或,
與的區(qū)間上情況如下:
所以,當(dāng)時(shí)且時(shí),存在,,,
使得.
由的單調(diào)性知,當(dāng)且僅當(dāng)時(shí),函數(shù)有三個(gè)不同零點(diǎn).
即方程有三個(gè)不同實(shí)根.
(2)當(dāng)時(shí),,,
此時(shí)函數(shù)在區(qū)間上單調(diào)遞增,
所以不可能有三個(gè)不同零點(diǎn).
當(dāng)時(shí),只有一個(gè)零點(diǎn),記作,
當(dāng)時(shí),,在區(qū)間上單調(diào)遞增;
當(dāng)時(shí),,在區(qū)間上單調(diào)遞增.
所以不可能有三個(gè)不同零點(diǎn).
綜上所述,若函數(shù)有三個(gè)不同零點(diǎn),則必有.
故是有三個(gè)不同零點(diǎn)的必要條件.
當(dāng),時(shí),,只有兩個(gè)不同零點(diǎn),
所以不是有三個(gè)不同零點(diǎn)的充分條件.
因此是有三個(gè)不同零點(diǎn)的必要而不充分條件.
即是方程有三個(gè)不同實(shí)根的必要而不充分條件.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:y=kx+b,(0<b<1)和圓O:相交于A,B兩點(diǎn).
(1)當(dāng)k=0時(shí),過點(diǎn)A,B分別作圓O的兩條切線,求兩條切線的交點(diǎn)坐標(biāo);
(2)對(duì)于任意的實(shí)數(shù)k,在y軸上是否存在一點(diǎn)N,滿足?若存在,請(qǐng)求出此點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)高三年級(jí)有學(xué)生500人,其中男生300人,女生200人。為了研究學(xué)生的數(shù)學(xué)成績(jī)是否與性別有關(guān),采用分層抽樣的方法,從中抽取了100名學(xué)生,統(tǒng)計(jì)了他們期中考試的數(shù)學(xué)分?jǐn)?shù),然后按照性別分為男、女兩組,再將兩組的分?jǐn)?shù)分成5組: 分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖。
(I)從樣本分?jǐn)?shù)小于110分的學(xué)生中隨機(jī)抽取2人,求兩人恰為一男一女的概率;
(II)若規(guī)定分?jǐn)?shù)不小于130分的學(xué)生為“數(shù)學(xué)尖子生”,請(qǐng)你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“數(shù)學(xué)尖子生與性別有關(guān)”?
附表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為: ,直線的參數(shù)方程是(為參數(shù), ).
(1)求曲線的直角坐標(biāo)方程;
(2)設(shè)直線與曲線交于兩點(diǎn),且線段的中點(diǎn)為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形中,∥,,,,將△沿對(duì)角線折起,設(shè)折起后點(diǎn)的位置為,使二面角為直二面角,給出下面四個(gè)命題:① ;②三棱錐的體積為;③平面;④平面平面;其中正確命題的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 是邊長(zhǎng)為3的正方形,平面,,,BE與平面所成角為.
(Ⅰ)求證:平面 ;
(Ⅱ)求二面角的余弦值;
(Ⅲ)設(shè)點(diǎn)M在線段BD上,且平面BEF,求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;
(2)設(shè)函數(shù)(為自然對(duì)數(shù)的底數(shù)),證明:對(duì)任意的,都有恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的方程為y=x-2,又直線l過橢圓C:(a>b>0)的右焦點(diǎn),且橢圓的離心率為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)D(0,1)的直線與橢圓C交于點(diǎn)A,B,求△AOB的面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com