已知直線與橢圓相交于A、B兩點.
(1)若橢圓的離心率為,焦距為2,求線段AB的長;
(2)若向量與向量互相垂直(其中為坐標原點),當橢圓的離心率時,求橢圓長軸長的最大值.
(1)     (2)
(1)(6分),2c=2,即
∴橢圓的方程為
將y ="-" x+1代入消去y得:


(2)(7分)設
,即
,
消去y得:
,
整理得:


,得:
,
整理得:

代入上式得:,


條件適合,
由此得:
故長軸長的最大值為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓的中心為原點O,長軸在x軸上,離心率,過左焦點F1作x軸的垂線交橢圓于A、A′兩點,|AA′|=4.
(1)求該橢圓的標準方程;
(2)取平行于y軸的直線與橢圓相交于不同的兩點P、P′,過P、P′作圓心為Q的圓,使橢圓上的其余點均在圓Q外.求△PP'Q的面積S的最大值,并寫出對應的圓Q的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線y2=
1
2
x
的焦點到準線的距離為( 。
A.
1
8
B.
1
4
C.
1
2
D.1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知直線l與拋物線相切于點P(2,1),且與軸交于點A,定點B的坐標為(2,0) .

(1)若動點M滿足,求點M的軌跡C;
(2)若過點B的直線l(斜率不等于零)與(I)中的軌跡C交于不同的兩點E、F(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設雙曲線的兩個焦點為,一個頂點式,則的方程為          .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

拋物線的焦點為,點為該拋物線上的動點,又點,
的取值范圍是     

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設橢圓的方程為右焦點為,方程的兩實根分別為,則(   )
A.必在圓
B.必在圓
C.必在圓
D.必在圓與圓形成的圓環(huán)之間

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的中心在坐標原點,對稱軸為坐標軸,焦點在軸上,有一個頂點為
(1)求橢圓的方程;
(2)過點作直線與橢圓交于兩點,線段的中點為,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過點作斜率為的直線與橢圓相交于,若是線段的中點,則橢圓的離心率為     

查看答案和解析>>

同步練習冊答案