3.若橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與雙曲線$\frac{3{x}^{2}}{{a}^{2}}$-$\frac{3{y}^{2}}{^{2}}$=1共焦點,則雙曲線的漸近線方程為( 。
A.y=±$\frac{\sqrt{2}}{2}$xB.y=±$\sqrt{2}$xC.y=±$\frac{1}{2}$xD.y=±2x

分析 運用橢圓和雙曲線的a,b,c的關系,求得a,b的關系,可得雙曲線的漸近線方程.

解答 解:由橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與雙曲線$\frac{3{x}^{2}}{{a}^{2}}$-$\frac{3{y}^{2}}{^{2}}$=1共焦點,
可得a2-b2=$\frac{{a}^{2}}{3}$+$\frac{^{2}}{3}$,即a2=2b2,
即為a=$\sqrt{2}$b,
可得雙曲線的漸近線方程為y=±$\frac{a}$x,
即為y=±$\frac{\sqrt{2}}{2}$x.
故選:A.

點評 本題考查雙曲線的漸近線方程的求法,注意運用橢圓和雙曲線的焦點坐標,考查運算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

13.在△ABC中,內角A,B,C所對的邊分別是a,b,c,且滿足2$\overrightarrow{AB}$$•\overrightarrow{AC}$=a2-(b+c)2,acosB+bcosA=2csinC,b=2$\sqrt{3}$,則△ABC的面積為3$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.設O為坐標原點,P(1,1),Q(4,5),則$\overrightarrow{OP}$=(1,1);$\overrightarrow{PQ}$=(3,4),|$\overrightarrow{PQ}$|=5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在直平行六面體ABCD-A1B1C1D1中,底面ABCD是菱形,∠DAB=60°,AC∩BD=O,AB=AA1=1.
(Ⅰ)求證:OC1∥平面AB1D1
(Ⅱ)求證:平面AB1D1⊥平面ACC1A1
(Ⅲ)求三棱錐A1-AB1D1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,四棱錐P-ABCD中,底面四邊形ABCD是正方形,PA=AB=1,PA⊥平面ABCD,E為棱PB上一點,PD∥平面ACE,過E作PC的垂線,垂足為F.
(Ⅰ)求證:PC⊥平面AEF;
(Ⅱ)求三棱錐P-AEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.如圖,為了測量A,C兩點間的距離,選取同一平面上B、D兩點,測出四邊形ABCD各邊的長度(單位:km):AB=5,BC=8,CD=3,DA=5,且∠B與∠D互補,則AC的長為7km.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.若x、y滿足$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≤0}\\{y≥0}\end{array}\right.$,則z=y-$\frac{1}{2}$|x|的最大值為$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知$\left\{\begin{array}{l}x+y≥5\\ x+2y≤3\end{array}\right.$,則z=x+4y能取得最大(大或。┲禐-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.某班5位同學分別選擇參加數(shù)學、物理、化學這3個學科的興趣小組,每人限選一門學科,則每個興趣小組都至少有1人參加的不同選擇方法種數(shù)為( 。
A.150B.180C.240D.540

查看答案和解析>>

同步練習冊答案