如圖,A,B,C,D四點(diǎn)在同一圓上,AD的延長線與BC的延長線交于E點(diǎn),且EC=ED.
(Ⅰ)證明:CB=DA;
(Ⅱ)若∠AEB=60°且D是AE的中點(diǎn),證明:AB是該圓的直徑.
考點(diǎn):與圓有關(guān)的比例線段
專題:立體幾何
分析:(I)由已知得∠EDC=∠ECD,∠EDC=∠EBA.從而∠ECD=∠EBA,同理∠EDC=∠EAB,由此能證明CB=DA.
(II)取AB的中點(diǎn)O,連OD,則OD=
1
2
BE
.由(I)知△EDC和△EAB都是正三角形,由此能證明AB是該圓的直徑.
解答: 解:(I)因?yàn)镋C=ED,所以∠EDC=∠ECD.
因?yàn)锳,B,C,D四點(diǎn)在同一圓上,
所以∠EDC=∠EBA.
故∠ECD=∠EBA,同理∠EDC=∠EAB
所以∠EAB=∠EBA,所以EA=EB,
所以CB=DA.…(5分)
(II)取AB的中點(diǎn)O,連OD,則OD=
1
2
BE

由(I)知△EDC和△EAB都是正三角形,
所以O(shè)A=OB=OD
所以AB是該圓的直徑. …(10分)
點(diǎn)評:本題考查兩線段長相等的證明,考查線段是圓的直徑的證明,解題時要認(rèn)真審題,注意圓的性質(zhì)的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x丨a-2<x<a+2},B={x丨(x-3)(x+2)<0},若A⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于兩個定義域相同的函數(shù)f(x)、g(x),若存在實(shí)數(shù)m,n使得h(x)=mf(x)+ng(x),則稱函數(shù)h(x)是“函數(shù)f(x),g(x)的一個線性表達(dá)”.
(1)若h(x)=2x2+3x-1是“函數(shù)f(x)=x2+ax,g(x)=x+b(a,b∈R,ab≠0)的一個線性表達(dá)”,求a+2b的取值范圍;
(2)若函數(shù)h(x)是“函數(shù)f(x)=log4(4x+1),g(x)=x-1的一個線性表達(dá)”且滿足:①h(x)是偶函數(shù);②g(x)的最小值是1,求h(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-2|-|x-5|.
(Ⅰ)證明:|f(x)|≤3;
(Ⅱ)若函數(shù)g(x)=f(x)-logax(a>0且a≠1)有兩個零點(diǎn),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2-5x+6=0},B={x|x2-(2a+1)x+a2+a=0},若B⊆A,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=2,an+1=4an-3n+1,n∈N*
(Ⅰ)求證:{an-n}是等比數(shù)列;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)設(shè)數(shù)列{an}的前n項(xiàng)和Sn,求Sn+1-Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為加強(qiáng)公民的節(jié)水意識,某城市制定了以下用水收費(fèi)標(biāo)準(zhǔn):每戶每月用水未超過7m3時,每立方米收費(fèi)1.0元,并加收0.2元的城市污水處理費(fèi);超過7m3的部分每立方米收費(fèi)1.5元,并加收0.4元的城市污水處理費(fèi).
(1)寫出每月用水量x(m3)與應(yīng)繳納水費(fèi)y(元)之間的函數(shù)解析式;
(2)設(shè)計一個求該函數(shù)值的算法;
(3)畫出程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:等腰梯形ABCD,E為底AB的中點(diǎn),AD=DC=CB=
1
2
AB=2,沿ED折成四棱錐A-BCDE,使AC=
6

(1)證明:平面AED⊥平面BCDE;
(2)求二面角E-AC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若Sn是等差數(shù)列{an}的前n項(xiàng)和,且a2+a10=4,求S11的值.

查看答案和解析>>

同步練習(xí)冊答案