分析 (1)由平面向量的共線定理列方程解出m;
(2)分別由兩條件列出關(guān)于${\overrightarrow}^{2}$和$\overrightarrow{a}•\overrightarrow$的方程,解出$\overrightarrow{a}•\overrightarrow$和${\overrightarrow}^{2}$,代入向量的夾角公式計(jì)算.
解答 解:(1)由$\overrightarrow c∥\overrightarrow a$,得:2(m-1)+3m=0,解得$m=\frac{2}{5}$.
(2)因?yàn)?\overrightarrow a=(-1,2)$,所以$|\overrightarrow a|=\sqrt{5}$,
由$({\overrightarrow a+2\overrightarrow b})⊥({2\overrightarrow a-\overrightarrow b})$,得:$({\overrightarrow a+2\overrightarrow b})•({2\overrightarrow a-\overrightarrow b})=0$,
∴2${\overrightarrow{a}}^{2}$-2${\overrightarrow}^{2}$+3$\overrightarrow{a}•\overrightarrow$=0,即10-2${\overrightarrow}^{2}$+3$\overrightarrow{a}•\overrightarrow$=0,
由$|\overrightarrow a-\overrightarrow b|=3$,得${\overrightarrow a^2}-2\overrightarrow a•\overrightarrow b+{\overrightarrow b^2}=9$,即$-2\overrightarrow a•\overrightarrow b+{\overrightarrow b^2}=4$,
解之得,$\overrightarrow a•\overrightarrow b=2$,${\overrightarrow b^2}=8$.
設(shè)$\overrightarrow a-\overrightarrow b$與$\overrightarrow b$的夾角為θ.
則$cosθ=\frac{(\overrightarrow a-\overrightarrow b)•\overrightarrow b}{|\overrightarrow a-\overrightarrow b||\overrightarrow b|}=\frac{{\overrightarrow a•\overrightarrow b-{{\overrightarrow b}^2}}}{{3×2\sqrt{2}}}=\frac{2-8}{{3×2\sqrt{2}}}=-\frac{{\sqrt{2}}}{2}$,
又θ∈[0,π],所以$θ=\frac{3π}{4}$.
即$\overrightarrow a-\overrightarrow b$與$\overrightarrow b$的夾角為$\frac{3π}{4}$.
點(diǎn)評 本題考查了平面向量的數(shù)量積運(yùn)算,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (0,1] | C. | [0,1) | D. | [0,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{8}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],k∈Z | B. | [2kπ+$\frac{π}{2}$,2kπ+$\frac{3π}{2}$],k∈Z | ||
C. | [kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$],k∈Z | D. | [kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$],k∈Z |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-15,+∞) | B. | (-∞,2-12$\sqrt{2}$] | C. | (-∞,-16] | D. | (-∞,-15] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com