【題目】甲、乙兩人約定在下午 4:30:5:00 間在某地相見,且他們在 4:30:5:00 之間 到達(dá)的時刻是等可能的,約好當(dāng)其中一人先到后一定要等另一人 20 分鐘,若另一人仍不到則可以離去,則這兩人能相見的概率是( )
A.
B.
C.
D.
【答案】B
【解析】解:因為兩人誰也沒有講好確切的時間, 故樣本點由兩個數(shù)(甲乙兩人各自到達(dá)的時刻)組成.
以4:30點鐘作為計算時間的起點建立如圖所示的平面直角坐標(biāo)系,設(shè)甲乙各在第x分鐘和第y分鐘到達(dá),則樣本空間為Ω:{(x,y)|0≤x≤30,0≤y≤30},畫成圖為一正方形.
會面的充要條件是|x﹣y|≤20,即事件A={可以會面}所對應(yīng)的區(qū)域是圖中的陰影線部分,
∴由幾何概型公式知所求概率為面積之比,即P(A)= ;
故選B.
【考點精析】關(guān)于本題考查的幾何概型,需要了解幾何概型的特點:1)試驗中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年空氣質(zhì)量逐步霧霾天氣現(xiàn)象增多,大氣污染危害加重,大氣污染可引起心悸,呼吸困難等心肺疾病,為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)的對入院50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
患心肺疾病 | 不患心肺疾病 | 合計 | |
男 | 5 | ||
女 | 10 | ||
合計 | 50 |
已知在全部50人中隨機(jī)抽取1人,抽到患心肺疾病的人的概率為.
(1)請將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān)?說明你的理由;
(2)已知在患心肺疾病的10位女性中,有3位又患胃病,現(xiàn)在從患心肺疾病的10位女性中,選出3名進(jìn)行其他方面的排查,記選出患胃病的女性人數(shù)為,求的分布列、數(shù)學(xué)期望及方差,下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式,其中.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(, 是自然對數(shù)的底數(shù)).
(1)當(dāng)時,求曲線在點處的切線方程;
(2)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且bsinA=asin2B.
(Ⅰ)求角B;
(Ⅱ)若b= ,a+c=ac,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O:x2+y2=2,⊙M:(x+2)2+(y+2)2=2,點P的坐標(biāo)為(1,1).
(1)過點O作⊙M的切線,求該切線的方程;
(2)若點Q是⊙O上一點,過Q作⊙M的切線,切點分別為E,F(xiàn),且∠EQF= ,求Q點的坐標(biāo);
(3)過點P作兩條相異直線分別與⊙O相交于A,B,且直線PA與直線PB的傾斜角互補(bǔ),試判斷直線OP與AB是否平行?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱柱 ABCD﹣A1B1C1D1中,底面為平行四邊形,以頂點 A 為端點的三條棱長都相等,且兩兩夾角為 60°.則線段 AC1與平面ABC所成角的正弦值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐中, 和是邊長為的等邊三角形, , 分別是的中點.
(1)求證: 平面;
(2)求證: 平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=lnx+ax2+x+1.
(I)a=﹣2時,求函數(shù)f(x)的極值點;
(Ⅱ)當(dāng)a=0時,證明xex≥f(x)在(0,+∞)上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】私家車的尾氣排放是造成霧霾天氣的重要因素之一,因此在生活中我們應(yīng)該提倡低碳生活,少開私家車,盡量選擇綠色出行方式,為預(yù)防霧霾出一份力.為此,很多城市實施了機(jī)動車車尾號限行,我市某報社為了解市區(qū)公眾對“車輛限行”的態(tài)度,隨機(jī)抽查了50人,將調(diào)查情況進(jìn)行整理后制成下表:
(Ⅰ)完成被調(diào)查人員的頻率分布直方圖;
(Ⅱ)若從年齡在[15,25),[25,35)的被調(diào)查者中各隨機(jī)選取2人進(jìn)行追蹤調(diào)查,求恰有2人不贊成的概率;
(Ⅲ)在(Ⅱ)的條件下,再記選中的4人中不贊成“車輛限行”的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com