分析 (1)在PC上取一點(diǎn)F,使PF=2FC,連接MF,NF,通過證明四邊形MFNA為平行四邊形,得AM∥NA,于是AM∥平面PNC;
(2)由菱形性質(zhì)可得CD⊥DE,由PD⊥平面ABCD可得PD⊥CD,故而CD⊥平面PDE;
(3)利用公式VC-PDA=VP-ACD=$\frac{1}{3}{S}_{△ACD}•PD$計(jì)算.
解答 證明:(1)在PC上取一點(diǎn)F,使PF=2FC,連接MF,NF,
∵PM=2MD,AN=2NB,∴MF∥DC,MF=$\frac{2}{3}$CD,
又AN∥DC,AN=$\frac{2}{3}AB$=$\frac{2}{3}$CD.
∴MF∥AN,MF=AN,
∴MFNA為平行四邊形,即AM∥NA.
又AM?平面PNC,F(xiàn)N?平面PNC,
∴直線AM∥平面PNC.
(2)∵E是AB中點(diǎn),底面ABCD是菱形,∠DAB=60°,
∴∠AED=90°.
∵AB∥CD,∴∠EDC=90°,即CD⊥DE.
又PD⊥平面ABCD,CD?平面ABCD,
∴CD⊥PD.
又DE∩PD=D,PD?平面PDE,DE?平面PDE,
∴直線CD⊥平面PDE.
(3)VC-PDA=VP-ACD=$\frac{1}{3}{S}_{△ACD}•PD$=$\frac{1}{3}×\frac{1}{2}×3×3×\frac{\sqrt{3}}{2}×3$=$\frac{9\sqrt{3}}{4}$,
點(diǎn)評(píng) 本題考查了線面平行,線面垂直的判定,棱錐的體積計(jì)算,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x2=8y | B. | x2=-8y | C. | x2=16y | D. | x2=-16y |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com