A. | f($\frac{1}{2}$)<f($\frac{1}{3}$)<f(2) | B. | f(2)<f($\frac{1}{2}$)<f($\frac{1}{3}$) | C. | f($\frac{1}{3}$)<f($\frac{1}{2}$)<f(2) | D. | f($\frac{1}{2}$)<f(2)<f($\frac{1}{3}$) |
分析 由題意函數(shù)f(x)(x∈R)滿足f(2-x)=f(x),可得函數(shù)的對稱軸為x=1,當(dāng)x≥1時,f(x)=lnx,根據(jù)f(x)的單調(diào)性可得答案.
解答 解:∵f(2-x)=f(x)∴函數(shù)的對稱軸為x=1
∵x≥1時,f(x)=lnx∴函數(shù)以x=1為對稱軸且左減右增,
故當(dāng)x=1時函數(shù)有最小值,離x=1越遠,函數(shù)值越大.
∴f($\frac{1}{2}$)<f($\frac{1}{3}$)<f(2).
故選A
點評 本題考查了函數(shù)的對稱問題,單調(diào)性和對數(shù)函數(shù)及性質(zhì).屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x-2 | B. | $y=\frac{{{x^2}-4}}{x+2}$ | C. | $y=\frac{{{{({x-2})}^2}}}{x-2}$ | D. | $y={({\frac{x-2}{{\sqrt{x-2}}}})^2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$-f(-$\frac{5π}{6}$)>$\frac{3}{4}$-f(-$\frac{2π}{3}$) | B. | $\frac{1}{4}$-f(-$\frac{5π}{6}$)>$\frac{3}{4}$-f(-$\frac{4π}{3}$) | ||
C. | $\frac{3}{4}$-f($\frac{π}{3}$)>$\frac{1}{2}$-f($\frac{3π}{4}$) | D. | $\frac{1}{2}$-f(-$\frac{3π}{4}$)>$\frac{3}{4}$-f($\frac{π}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $-\frac{3}{4}$ | C. | $\frac{4}{3}$ | D. | $-\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,0] | B. | [-1,0] | C. | [-1,-2] | D. | [0,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com