函數(shù)f(x)的定義域為A,若x1,x2∈A且當(dāng)f(x1)=f(x2)時,總有x1=x2,則稱f(x)為單函數(shù).例如,函數(shù)f(x)=2x+1(x∈R)是單函數(shù).下列命題:
①函數(shù)f(x)=x2(x∈R)是單函數(shù);
②若f(x)為單函數(shù),x1,x2∈A且x1≠x2,則f(x1)≠f(x2);
③若f:A→B為單函數(shù),則對于任意b∈B,它至多有一個原象;
④函數(shù)f(x)在A上具有單調(diào)性,則f(x)一定是單函數(shù).
其中為真命題的是 .(寫出所有真命題的序號)
【答案】分析:根據(jù)單函數(shù)的定義f(x1)=f(x2)時總有x1=x2,可知函數(shù)f(x)則對于任意b∈B,它至多有一個原象,而①f(-1)=f(1),顯然-1≠1,可知它不是單函數(shù),②③④都是,可得結(jié)果.
解答:解:∵若x1,x2∈A,且f(x1)=f(x2)時總有x1=x2,則稱f(x)為單函數(shù)
①函數(shù)f(x)=x2不是單函數(shù),∵f(-1)=f(1),顯然-1≠1,
∴函數(shù)f(x)=x2(x∈R)不是單函數(shù);
②∵f(x)為單函數(shù),且x1≠x2,
若f(x1)=f(x2),則x1=x2,與x1≠x2矛盾
∴②正確;
③若f:A→B為單函數(shù),則任意的a∈A,則f(a)∈B,當(dāng)f(a)=b時,b在A中有唯一的原像,當(dāng)f(a)≠b時,b在集合A中沒有原像,則對于任意b∈B,它至多有一個,③正確
④∵函數(shù)f(x)是單調(diào)函數(shù),
∴f(x1)=f(x2)時總有x1=x2,即④正確;
故答案為:②③④.
點評:此題以新定義為載體,主要考查了利用新知識分析解決問題的能力,以及知識方法的遷移能力.