已知函數(shù)f(x)=aln xax-3(a∈R).
(1)若a=-1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)yf(x)的圖象在點(diǎn)(2,f(2))處的切線(xiàn)的傾斜角為45°,對(duì)于任意的t∈[1,2],函數(shù)g(x)=x3x2 (f′(x)是f(x)的導(dǎo)函數(shù))在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;
(3)求證:×…×< (n≥2,n∈N*)
(1)單調(diào)增區(qū)間為(1,+∞),減區(qū)間為(0,1).(2)不是,(3)見(jiàn)解析
(1)解 當(dāng)a=-1時(shí),f′(x)= (x>0)
f′(x)>0,得x∈(1,+∞);
f′(x)<0,得x∈(0,1).
∴函數(shù)f(x)的單調(diào)增區(qū)間為(1,+∞),減區(qū)間為(0,1).
(2)解 ∵f′(x)= (x>0),∴f′(2)=-=1得a=-2,∴f(x)=-2ln x+2x-3,g(x)=x3x2-2x,∴g′(x)=3x2+(m+4)x-2,∵g(x)在區(qū)間(t,3)上總不是單調(diào)函數(shù),且g′(0)=-2,∴
由題意知:對(duì)于任意的t∈[1,2],gt<0恒成立,
所以,∴-<m<-9.
m的取值范圍是.
(3)證明 由(1)知當(dāng)x∈(1,+∞)時(shí)f(x)>f(1),即-ln xx-1>0,∴0<ln x<x-1對(duì)一切x∈(1,+∞)成立.
n≥2,n∈N*,則有0<ln n<n-1,∴0<.
 (n≥2,n∈N*).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)處存在極值.
(1)求實(shí)數(shù)的值;
(2)函數(shù)的圖像上存在兩點(diǎn)A,B使得是以坐標(biāo)原點(diǎn)O為直角頂點(diǎn)的直角三角形,且斜邊AB的中點(diǎn)在軸上,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),討論關(guān)于的方程的實(shí)根個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)已知函數(shù)f(x)=ex-1-tx,?x0∈R,使f(x0)≤0,求實(shí)數(shù)t的取值范圍;
(2)證明:<ln,其中0<a<b;
(3)設(shè)[x]表示不超過(guò)x的最大整數(shù),證明:[ln(1+n)]≤[1++ +]≤1+[lnn](n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)記函數(shù)的最小值為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,函數(shù).
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)當(dāng)有兩個(gè)極值點(diǎn)(設(shè)為)時(shí),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x3+ax2+bx(a,b∈R).
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(1)=,且函數(shù)f(x)在上不存在極值點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)f(x)=x3-2x2+3m,x∈[0,+∞),若f(x)+5≥0恒成立,則實(shí)數(shù)m的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=xln x,g(x)=x3ax2x+2.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)對(duì)一切x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=-aln xx(a≠0),
(1)若曲線(xiàn)yf(x)在點(diǎn)(1,f(1))處的切線(xiàn)與直線(xiàn)x-2y=0垂直,求實(shí)數(shù)a的值;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊(cè)答案